
X
MPP is an XML-based open
standards protocol. It uses XML
streams to implement the entire
message communication system.

XMPP is used in a de-centralised client-
server architecture, in which a server acts as
an intermediary for the message transfer, and
also manages services like the user account
registration, authentication, buddy list database,
etc. Since our primary focus is on clients, we
won't dig any more into the server part—we
will just consider the server to be a ‘black
box’ entity available at a specific IP address/
hostname and port number, which meaningfully
responds to our XMPP requests.

We connect to the server using a TCP socket
in our program. An explanation of networking,
TCP/IP, IP addresses, ports and sockets is too
much information to put into this article, so if
these concepts are new to you, you could visit
http://en.wikipedia.org/wiki/Internet_socket for

some quick reading.
Since our purpose in this article is to code

our own Google Talk client, the hostname of
the server we will use is gmail.com, and the
port we will use is 5222, the default port for
the XMPP service.

The sequence of the initial interaction
between client and server is as follows:
1. The client connects to the server and sends

credentials like the username and password.
2. The server validates the received credentials

against its user database and sends a
response to the client.

3. When authentication is successful, the client
receives a response containing presence
notification data. This is a collection of
presence data from different buddies of the
user, which the client authenticated to the
server. Presence is explained below.
As already noted, the communication

between client and server is in the form of

Use XMPP to
Create Your Own
Google Talk Client
Instant communication is now the essence of social networking and the Internet.
The popular Google Talk, which uses XMPP (Extensible Messaging and Presence
Protocol), made this Instant Messaging protocol prominent among open
standards protocols. Exploring XMPP (formerly known as the Jabber protocol) is
fun—it is a transparent and simple architecture. Once you understand it, you can
easily write your own XMPP/GTalk clients from the ground up, using the friendly
and powerful Python scripting language.

32  |  MAY 2010 | LINUX For YoU | www.LinuxForU.com

Developers  |  How To __

www.LinuxForU.com | LINUX For YoU | MAY 2010 | 33

___ How To  |  Developers

XML streams, over the connection created at the beginning
of the interaction.

Before we get down to the code, we need to define some
terms and underlying concepts that are involved with the use
of the XMPP protocol. To write an XMPP client, we don't
need a thorough understanding of the XML streams that are
exchanged between client and server, since we use libraries
that abstract away the complexities of the underlying protocol,
and provide an API to us. In this article, we'll be using Python
to write our code, and the python-xmpp library provides us a
neat API. We need to understand the types of communication
and interaction involved, however, so let's begin.

Note: The XML streams shown below as examples are not
as they would actually be in a live XMPP session, since I have
omitted attributes of some elements, and omitted portions of
the XML stream that are not required to illustrate the concept.
Since the python-xmpp library handles the nitty-gritty of
building, sending, and receiving the XML streams, you don't
need to memorise the XML samples—just look at them as
illustrations, and not as code that you have to write yourself.

Resource
The XMPP client could be running on any of several types
of computing devices, ranging from mobile phones and
embedded devices to laptops and full-fledged desktops.
The type of devices on which the client is running can be
exposed in the from attribute in XML streams sent by the
client, and this information is termed ‘resource’. The from
attribute is in the format from=“userid@domain/resource”.
For example, a client running on an Android phone could
send something like “userid@gmail.com/Android”. This
identifier can be very useful in many ways: administration
tools that manage many clients could segregate the clients on
this basis. The server could adjust its responses to the type
of resource being used—for example, if connected from a
mobile phone, the length of responses, the size of images,
etc. could be held to a minimum to avoid long download
times on a slow GPRS connection.

With this information exposed to the clients that buddies
are running, it is then possible for clients to also treat different
buddy resources in a different manner. For example, I might
want to send the message “Hello Android guys!” to all my
buddies who are connected from an Android device, but send
“Hello, netbook guys!” to all buddies connected from netbooks.

Stanza
A stanza is an atomic command in XMPP, and one of the
fundamental structures in the protocol layer. You can send an
unlimited number of stanzas over an established connection
between server and client.

Once an authenticated connection and XML stream is
established between the server and the client, the client
and the server can exchange (as part of the messaging
service) three basic XML stanzas in their communications—
<message/>, <presence/>, and <iq/>. We'll look at each of
those in turn.

Presence
As the word signifies, presence is a method by which a
client/user notifies buddies and the XMPP server of its current
status—whether the user is online or offline. When a client
authenticates, it sends a presence notification stanza to the
server, with some metadata that describes the client—the
current status text, whether Busy, Available or Away, the
resource parameter, user nickname, the client name, etc. When
the server receives the presence stanza, it sends a copy of
the data to all users who are in the buddy list of the user who
sent the presence stanza. If you use the Pidgin messenger to
connect to GTalk, hover the mouse pointer over an entry in
your buddy list to see some of that metadata.

Here's a sample of an XML presence indication stanza:

 <presence from="slynux@slynux.com/Android">

 <show>xa</show>

 <status>Writing for LFY</status>

 </presence>

Message
Message is an XML stanza used to send messages between
users. It looks like what’s shown below:

<message from="slynux@gmail.com/Home"

 to="slynuxguy@gmail.com"

 type="chat">

 <body>Hey, Whats up ?</body>

 <subject>Query</subject>

</message>

IQ
IQ (Info/Query) is an XML stanza that is similar to GET and
POST requests in the HTTP protocol. We use IQ to request for
some information from the server, and collect the response for
further use. If the request is invalid or cannot be processed,
the server returns an error stanza. The XMPP protocol states
that every iq stanza should contain an id attribute, whose
value is generated by the client (the XMPP library used). This
id attribute is returned in the iq response from the server, and
can be used by the client to match the received response with
a specific iq request it sent (useful in the case of the client
sending multiple iq requests in a batch). Since the underlying
details of generating a unique id are dealt with by the library
(in our case, python-xmpp), we don't have to worry about that
in our code.

For example, the following snippet is a roster query (more
about that below) as sent to the server:

<iq from="slynuxguy@gmail.com"

 id="7"

 to="slynuxguy@gmail.com/Pidgin"

 type="get">

 <query xmlns="jabber:iq:roster"/>

</iq>

32  |  MAY 2010 | LINUX For YoU | www.LinuxForU.com

Developers  |  How To __

www.LinuxForU.com | LINUX For YoU | MAY 2010 | 33

___ How To  |  Developers

Shown below is a sample response from the server:

<iq to="slynuxguy@gmail.com/Pidgin"

 id="7"

 type="result">

 <query xmlns="jabber:iq:roster">

 <item jid="user3@gmail.com/Home"/>

 <item jid="user4@gmail.com/Adium"/>

 <item jid="user4@gmail.com/Android"/>

 </query>

</iq>

You'll see multiple entries for user4—user4@gmail.com/
Adium and user4@gmail.com/Android. Adium and Android
are resource parameters, as discussed earlier. This tells us that
user4 has logged in from two clients.

Roster
A roster in XMPP is basically a buddy list, which contains
a presence attribute for each user item. Your roster contains
a list of Jabber user IDs (called JIDs) and the state of your
presence subscriptions with those entities. When you come
online, your client announces your presence to the server,
and it handles the rest—both notifying your contacts that you
are online, and fetching their current presence to display in
your client interface. Your roster is updated when you send a
presence stanza.

Here is a sample of an XML stream that combines each
of the three types of stanzas in a session with the server.
Note that this is not a debug output—the actual debug output
streams will have many more details. This is just a structural
example of an internal XML stream, intended to conceptually
demonstrate interaction between client and server, and is
taken from XMPP documentation. In this sample, the client
(identified by “C:” in the sample) has authenticated with
gmail.com as user5@gmail.com.

C: <stream:stream>

C: <presence/>

C: <iq type="get" id="1">

 <query xmlns="jabber:iq:roster"/>

 </iq>

S: <iq type="result" id="1" >

 <query xmlns="jabber:iq:roster">

 <item jid="user1@gmail.com"/>

 <item jid="user2@gmail.com"/>

 <item jid="user3@gmail.com"/>

 </query>

 </iq>

C: <message from="user5@gmail.com"

 to="user2@gmail.com">

 <body>Hello world!</body>

 </message>

S: <message from="user3@gmail.com"

 to="user5@gmail.com">

 <body>Kudos to you</body>

 </message>

C: <presence type="unavailable"/>

C: </stream:stream>

There can be many kinds of requests like the buddy add
request, buddy remove request, group chat request, etc. All of
these are handled by XML streams. XMPP includes a method
to secure the stream from tampering and eavesdropping. This
channel encryption method makes use of the Transport Layer
Security (TLS) protocol, along with a "STARTTLS" extension
that is modelled after similar extensions for the IMAP, POP3
and ACAP protocols.

Hands-on client code
We will now take a look at how we can write our own
Google Talk XMPP client from scratch using Python, a
simple yet powerful language that includes a staggering
amount of functionality in its standard library—often
referred to as ‘batteries included’. In addition, there are
plenty of separately installable extensions and libraries for
Python—for almost everything you can do with
other languages.

For coding the client, we will use the XMPP module
for Python, which you will probably need to install. If you
are using a Debian-based distribution like Ubuntu, run the
following command:

$ sudo apt-get install python-xmpp

For other distributions, if a package is not available in the
repositories, download the tarball and install it as follows:

$ wget http://downloads.sourceforge.net/project/xmpppy/xmpppy/0.5.0-rc1/

xmpppy-0.5.0rc1.tar.gz?use_mirror=nchc

$ tar -xzvvf xmpppy-0.5.0rc1.tar.gz

$ cd xmpppy-0.5.0rc1

$ sudo python setup.py install

Now let us write the base client code. The code below will
connect the client to the server and authenticate. A base client
in just 12 lines of code—can you believe it?

#!/usr/bin/env python

import xmpp

user="username@gmail.com"

password="password"

server="gmail.com"

jid = xmpp.JID(user)

connection = xmpp.Client(server,debug=[])

connection.connect()

result = connection.auth(jid.getNode(), password,"LFY-client")

connection.sendInitPresence()

34  |  MAY 2010 | LINUX For YoU | www.LinuxForU.com

Developers  |  How To ___

www.LinuxForU.com | LINUX For YoU | MAY 2010 | 35

___ How To  |  Developers

while connection.Process(1):

 pass

Save the code in the file base.py and run it:

$ chmod a+x base.py

$./base.py

Now run a Pidgin instance and this client at the same
time. Use two different GTalk accounts to log in with Pidgin
and this client. After running this script, in Pidgin, hover the
mouse pointer over the script user (the user under whose
account the script authenticated itself). Check the status—
“LFY-client” — that has been set by the script. Try sending
messages to the script user account— of course, it will not
respond, because this is still a very basic client and we haven't
specified what to do when some message arrives.

Now, let's find out how to look into the XML stream.
Switch the debugging on: change the connection = xmpp.
Client(server,debug=[]) line to connection = xmpp.
Client(server) by removing the debug=[] Parameter. Now
when you run this script, you can see the XML stream, as
shown in Figure 1.

Writing a GTalk bot
You might have used or encountered GTalk bots that
auto-respond to messages—for example, Google's own
transliteration bots. If we add a transliteration bot as a buddy
and send a phonetic word to it, it will send back a Unicode
string transliterated to the corresponding Indic language. It
isn't hard to develop something like that if you have a back-
end application that can be used for transliteration. Now, we
will modify the current base.py by adding a message handler.
When a message is received, this handler will reply with the
message “Welcome to my first GTalk Bot :)”.

#!/usr/bin/env python

import xmpp

user="username@gmail.com"

password="password"

server="gmail.com"

def message_handler(connect_object, message_node):

	 	 message	=	"Welcome	to	my	first	Gtalk	Bot	:)"	

 connect_object.send(xmpp.Message(message_node.getFrom()

,message))

jid = xmpp.JID(user)

connection = xmpp.Client(server)

connection.connect()

result = connection.auth(jid.getNode(), password, "LFY-client")

connection.RegisterHandler('message', message_handler)

connection.sendInitPresence()

while connection.Process(1):

 pass

Here, connection.RegisterHandler('message',messag
e_handler) is used to specify that the message_handler()
function must be called when a message stanza is received.
The two arguments passed to the function are a connection
object, and the message stanza node. By using the attribute
function getFrom(), we obtain the JID of the user who sent the
message stanza, and we send our reply to that user. To obtain
the text of the received message, use the function message_
node.getBody().

Remote-control shell bot
You have seen how to write a very simple bot in a few lines of
code. Now let's play with another idea: remotely controlling
computers via an XMPP bot. Normally, we use SSH (Secure
Shell) for remote administration—it gives us a shell at the
remote machine, so we can execute commands on that
computer. Can we do something similar with an XMPP bot?
Yes! Let's modify our simple bot to act as a remote-controlled
shell bot. Replace the simple bot's message_handler() function
with this new one:

def message_handler(connect_object,message_node):

	 	 command	=	str(message_node.getBody())	

 process = subprocess.Popen(command,shell=True,stdout=subprocess.

PIPE, stderr=subprocess.PIPE)

 message = process.stdout.read()

 if message=="":

 message=process.stderr.read()

 connect_object.send(xmpp.Message(message_node.getFrom()

,message))

Note: You will need to add import subprocess at the
top of the program file, since the module is now used in the
message_handler() function.

In this message handler, we retrieve the text of a
message received from a sender, and run it as a command

Figure 1: Debug information (XML stream) in the terminal window

34  |  MAY 2010 | LINUX For YoU | www.LinuxForU.com

Developers  |  How To ___

www.LinuxForU.com | LINUX For YoU | MAY 2010 | 35

___ How To  |  Developers

using the subprocess Python module. We check the file
descriptors process.stdout (standard output of the sub-
process) and if that does not return any data, then process.
stderr (the standard error of the sub-process). We then
send the data returned from the sub-process to the sender
of the message.

Like before, from Pidgin (logged in as a different user), try
sending commands like ls, cat /proc/cpuinfo, etc, to this bot's
GTalk ID. You should see the expected results returned as
messages in your Pidgin window.

This bot has no access-control—any user in its buddy list
could send commands and have them executed. Let's add a
simple check for the message sender's ID, so we can restrict
command execution permission to a single buddy. Any other
users sending commands to the bot should receive an “Access
denied” type of error message. Replace the message_handler()
function with this new one:

def message_handler(connect_object,message_node):

 admin = "admin_user@gmail.com"

 from_user = message_node.getFrom().getStripped()

 if admin == from_user: # allow to execute command only if admin

requested

	 	 	 command	=	str(message_node.getBody())	

 process = subprocess.Popen(command,shell=True,stdout=subproces

s.PIPE, stderr=subprocess.PIPE)

 message = process.stdout.read()

 if message=="":

 message=process.stderr.read()

 else:

 message="Access denied!\nContact system admin"

 connect_object.send(xmpp.Message(message_node.getFrom()

,message))

Find invisible users
Most instant messaging protocols support invisible users,
so that anyone can remain online without being noticed by
anyone in their buddy list. GTalk is no exception. When
I started playing with XMPP, I noticed an interesting
thing about GTalk's implementation: it implements user
‘invisibility’ on the client side, not the server side. We
can easily find such invisible-yet-online users in our
buddy list by listening to the presence notifications.
(As explained before, whenever a client joins a server/
network, it sends a presence notification for the user.)
When a user authenticates to the server and becomes
invisible, the client sends an ‘unavailable’ presence to all
buddies in the roster. Thus, presence notifications with
a presence type of ‘unavailable’ means that the user is
in invisible mode. All GTalk clients ignore this type of
presence; hence, those users are not shown in the buddy
list. But we can write our own Python program to grab the

list of invisible users:

#!/usr/bin/python -W ignore::DeprecationWarning

import xmpp

user=”user@gmail.com"

password="password"

server="gmail.com"

def presenceHandler(conn, presence):

 if presence:

 if presence.getType() == "unavailable":

 print presence.getFrom().getStripped()

print “Invisible users:”

jid = xmpp.JID(user)

connection = xmpp.Client(server,debug=[])

connection.connect()

result = connection.auth(jid.getNode(), password,"Client Name")

connection.RegisterHandler('presence',presenceHandler)

connection.sendInitPresence()

while connection.Process(1):

 pass

Writing a GUI front end for your client
So far, our simple Python GTalk client using the XMPP
module was all about command-line programs that must
be run in a terminal. You can develop a Graphical User
Interface to make your client more user-friendly and
increase usability. The two most popular GUI toolkits for
use with Python are Qt and GTK. Qt is the base of the
KDE desktop environment, while GTK is the base for the
GNOME desktop environment. While writing the GUI, it
is important to remember that you need to use threading
to keep the XMPP and GUI part in separate threads. The
connection.Process(1) function is to be called in an infinite
loop. In the above programs, we used a while loop. In the
case of Qt or GTK, both maintain a window by using an
event loop—so using another infinite loop inside the Qt/
GTK window classes will, at some point, result in ‘frozen’
and unusable windows. Instead, use the Python threading
module to run the XMPP part in another thread.

Hope you enjoyed the hacks around Google Talk and
XMPP. Happy hacking till we meet again.

By: Sarath Lakshman
The author is a Hacktivist of Free and Open Source Software
from Kerala. He loves working on the GNU/Linux environment
and contributes to the PiTiVi video editor project. He is also the
developer of SLYNUX, a distro for newbies. He blogs at www.
sarathlakshman.info

36  |  MAY 2010 | LINUX For YoU | www.LinuxForU.com

Developers  |  How To ___

