
December 2008 | L INUX For YoU | www.openITis.com78

Introducing

ou plug your back-up hard disk
in! After a few seconds, you
get a notification: “Back-up is
complete.” You then unplug the
hard drive and your back-up for

the day is ready with you. Now imagine this:
you plug your EVDO/CDMA Internet data
card in, and within a few seconds you get
a notification: “Internet connected.” When
the device is unplugged, you get a message
stating the Net is disconnected. Can you
ever think of such a user experience under
GNU/Linux?

Of course you can! udev helps you
achieve this and a lot more. Let’s tune into
what’s so great about udev!

What is udev?
udev is a device manager for Linux that
runs in user space. It deals with device node
creation, while taking care of the persistent
naming of devices upon the availability of
real hardware.

By the UNIX concept, everything is a file.

We access our devices via corresponding files
in the /dev directory. As you know, /dev is
a directory containing device nodes for all
standard devices. Traditional UNIX systems
had static device nodes under the /dev
directory. What happens when you plug your
MP3 player in the USB port?

You might have noticed that it is /dev/
sda1, or some other node, through which
you access the contents of the filesystem.
/dev/sda1 is a device node corresponding
to that device. This kind of static device
node system worked fine, since there were
a limited number of devices in earlier times.
The existence of these device nodes was
independent of actual devices connected to
the hardware. It was a real hassle to decide
whether a piece of hardware existed or not,
since all possible device nodes existed.

Now, as the number of Linux-supported
devices increased, especially USB removable
devices and IEEE 1394 (Firewire ports),
the number of static nodes required under
/dev increased to a huge number—nearly

Y

Find out what’s up with this geeky utility called udev, and in the process learn
how to auto connect to the Internet as soon as you plug in that USB modem.
Or take a back-up of your home directory to start automatically as soon as you
connect an external hard drive.

udev
Unplugged!

www.openITis.com | L INUX For YoU | December 2008 79

Introducing

18,000—and it became unmanageable. Also, if some device
nodes that corresponded to a connected device did not
exist under /dev, you had to Google for the major and
minor number for the device, and create the device node
manually, using the mknod command. Since each device
has its unique major and minor numbers, this was a pretty
tough situation!

As a result, a pseudo RAM-based filesystem sysfs,
mounted under /sys, was introduced. Users now could
check whether a device existed or not, by looking into
the directory tree of devices under /sys. Still, this wasn’t
a satisfactory solution, since either of the devices were
statically built, or we had to create the device nodes
manually, using major and minor numbers for the
corresponding device.

Give the following tree command a try:

[slynux@gnubox ~]$ tree /sys/class/

Since our area of interest is making life easier with
udev, let’s move on to hacking udev.

udev runs in the memory all the time as a daemon
and listens to kernel messages. The kernel always sends a
message whenever it notices a hardware change. You can
observe it by running the dmesg command. The following
is the dmesg output when I connect an external hard disk:

dmesg | tail

sd 5:0:0:0: [sdb] Attached SCSI disk

sd 5:0:0:0: Attached scsi generic sg2 type 0

kjournald starting. Commit interval 5 seconds

EXT3 FS on sdb, internal journal

EXT3-fs: recovery complete.

EXT3-fs: mounted filesystem with ordered data mode.

So, let’s take a look at the duties of udev:
Listen to kernel messages. If some device is connected,
create its device nodes according to the order in which
it is connected. udev has the ability to identify each
of the devices uniquely. Device nodes are created only
when the device is connected.
Removal of device nodes when the device is unplugged.
Create symlinks for device nodes, and execute
commands upon udev events.
Follow the udev rules. The udev daemon is controlled
by a set of user-specified rules.
Consider the following scenario, with which I’ll try

to elaborate the usefulness of udev. Let’s suppose you
have two printers—one an inkjet and the other a laser
colour printer. Usually, the one that is connected first is
designated as /dev/lp0 and the second one /dev/lp1. How
do you understand which one is laser and which one is
inkjet? Is it by looking at which one is switched on first?

udev is brilliant in solving such nonsense. What if you
are able to get /dev/laser for the laser printer and /dev/

•

•
•

•

dotmat for the dot matrix printer. udev can identify each
of the devices uniquely by specifying certain parameters
through udev rules.

Rules explained!
The behaviour of udev on handling each of the devices
can be controlled by using udev rules. Most of the newer
distros ship with a number of default udev rules meant
for hardware detection. When deciding how to name a
device and which additional actions to perform, udev
reads a series of rule files. These files are kept in the /etc/
udev/rules.d directory, and they all must have the .rules
suffix. In a rules file, lines starting with “#” are treated as
comments. Every other non-blank line is a rule and rules
cannot span multiple lines. The default rules file can be
seen at /etc/udev/rules.d/50-udev-default.rules

A rule consists of a combination of matching keys for
the device and the action to be done on matching the
device. In other words, a rule explains how to find the
specific device and what to do when it is found.

The following is the basic syntax of a rule:

KEY1=”value”, KEY3=”value”, KEY4==”value”...SYMLINK+=”link”

The following line is a simple udev rule. It tells the
udev daemon to create /dev/cdrom and /dev/cdrom0
softlinks to /dev/hdc whenever it finds /dev/hdc.

KERNEL==”hdc”, SYMLINK+=”cdrom cdrom0”

It is to be remembered that we can specify multiple
rules for a single device and it can be written in multiple
.rules files. When a device is plugged in or unplugged,
the udev daemon looks through all the .rules files in the
/etc/udev/rules.d directory until all matching rules are
read and executed.

The following are some of the keys or parameters
that can be used for device matching and the actions in
a udev rule:

BUS: matches the bus type of the device; examples of
this include PCI, USB or SCSI.
KERNEL: matches the name the kernel gives the
device.
ID: matches the device number on the bus; for
example, the PCI bus ID or the USB device ID.
PLACE: matches the topological position on the bus,
such as the physical port a USB device is plugged in to.
SYSFS_filename, SYSFS{filename}: allows udev to
match any sysfs device attribute, such as the label,
vendor, USB serial number or SCSI UUID. Up to five
different sysfs files can be checked in a single rule,
with all of the values being required in order to match
the rule.
PROGRAM: allows udev to call an external program
and check the result. This key is valid if the program
returns successfully. The string returned by the

•

•

•

•

•

•

December 2008 | L INUX For YoU | www.openITis.com80

Introducing

program additionally may be matched with the
RESULT key.
ATTR: different attributes for the device like size,
product ID, vendor, etc.
RESULT: matches the returned string of the last
PROGRAM call. This key may be used in any rule
following a PROGRAM call.
RUN: it can be set to some external program that can
be executed when a device is detected.
SYMLINK: for creating symlinks for the matching
device.
ACTION: permits two match conditions ‘add’ and
‘remove’ when a new device is added or removed.
In addition to this, Table 1 lists different operators you

can use with each of the keys.
Now the question is: how do we collect information

about devices?
Writing a rule is, in turn, matching the device by

specifying unique bytes about the device. The unique
information about the device can be grabbed from sysfs:

[slynux@gnubox tmp]$ cat /sys/block/sda/sda1/size

14336000

Here I have retrieved an attribute size for the device
sda1. Now I can use ATTR{size}==”14336000” to match
the device /dev/sda1.

To make the job easier, we have a udev utility called
udevinfo, which can be used to collect details about
devices and write rules in a very handy way. The following
is the udevinfo output for the same /dev/sda1:

udevinfo -a -p /sys/block/sda/sda1

 looking at device ‘/devices/pci0000:00/0000:00:1f.2/host0/

target0:0:0/0:0:0:0/block/sda/sda1’:

 KERNEL==”sda1”

 SUBSYSTEM==”block”

 DRIVER==””

 ATTR{dev}==”8:1”

 ATTR{start}==”2048”

 ATTR{size}==”14336000”

 ATTR{stat}==” 190 59 2162 1655 30 31 488 836

0 1652 2491”

As you can see, it returned a lot of information about
the device. We will take some of the above lines to make a
udev rule:

KERNEL==”sda1” , SUBSYSTEM==”block” , ATTR{dev}==”8:1”, 2048”

•

•

•

•

•

Now the match is ready! You can even create a symlink
for the device as /dev/musicdrive:

KERNEL==”sda1” , SUBSYSTEM==”block” , ATTR{dev}==”8:1”, 2048” ,

SYMLINK+=”musicdrive”

Alternatively, you can use the following to obtain
information about any device name:

udevinfo -a -p `udevinfo -q path -n /dev/devicename`

Setting up an automatic Internet connection
I depend on BSNL EVDO/CDMA for Internet access. I have
configured the dialling by using the wvdial PPP utility,
and I issue the wvdial command to connect under Fedora
9. I found it interesting to write udev rules to auto connect
Internet whenever I plug in the EVDO USB modem.

Here’s how to get started: first, plug in the EVDO
device in the USB port; second, run the dmesg command
at a terminal prompt. I received the following dmesg
output:

usb 6-2: New USB device found, idVendor=05c6, idProduct=6000

usb 6-2: New USB device strings: Mfr=1, Product=2, SerialNumber=0

usb 6-2: Product: ZTE CDMA Tech

usb 6-2: Manufacturer: ZTE, Incorporated

But there was no suitable kernel module loaded to
create /dev/ttyUSB0, which is the device node for the
corresponding device. You might try manually loading the
USB serial module specifying the Product ID and vendor
ID parameters—that is, idVendor=05c6, idProduct=6000.
Run the following command as the root user:

/sbin/modprobe usbserial product=0x6000 vendor=0x05c6

Executing the dmesg command again brings up the
following:

usb 6-2: configuration #1 chosen from 1 choice

usbserial_generic 6-2:1.0: generic converter detected

usb 6-2: generic converter now attached to ttyUSB0

As you can see, this time /dev/ttyUSB0 is created and
made available. [Actually when the module usbserial is
loaded using the modprobe command, it is required to
manually create /dev/ttyUSB0 using the mknod command.
But there is a default udev rule that creates the device.]

Now we have to dial wvdial as the root in order
to connect. How do we transform this manual process
to a udev rule? Run the following command to collect
appropriate parameters to match the device:

udevinfo -a -p $(udevinfo -q path -n /dev/ttyUSB0)

Now, create a file called /etc/udev/rules.d/100-bsnl.

Table 1: OperaTiOns fOr udev keys
Operator Meaning

== For matching. Eg: KERNEL==”ttyUSB0”

= Setting a parameter. Eg: NAME=”my_disk”

+= Adding to list. Eg: SYMLINK+=”cd1 cd2”

www.openITis.com | L INUX For YoU | December 2008 81

Introducing

rules and enter the following rules in it:

ATTRS{idVendor}==”05c6” , ATTRS{idProduct}==”6000”, RUN+=”/

sbin/modprobe usbserial product=0x6000 vendor=0x05c6”,

SYMLINK+=”netdevice”

ACTION==”add”, SUBSYSTEM==”tty”,KERNEL==”ttyUSB0”,

ATTRS{idVendor}==”05c6” , ATTRS{idProduct}==”6000”, RUN+=”/usr/bin/

evdo_connect”

ACTION==”remove”, SUBSYSTEMS==”usb”, KERNEL==”ttyUSB0”, RUN+=”/

usr/bin/msg_connection”

The first rule instructs udevd to listen to devices with
parameters idVendor=05c6 and idProduct=6000. If found,
load the corresponding usbserial kernel module. The
second rule instructs udevd to execute the evdo_connect
script when the above parameters match for a newly
added device /dev/ttyUSB0. ACTION=”add” means, when
the device was added.

The parameter value for RUN is an executable
command. But it should be noted that the executable
should be something that runs finite times rather than
something that contains an infinite loop or infinite
conditions.

/usr/bin/evdo_connect is made to run for a finite
number of times by sending wvdial and msg_connection
to the background.

Now, create two files. In the first file named /usr/bin/
evdo_connect enter the following text:

#!/bin/bash

/usr/bin/wvdial &

/usr/bin/msg_connection con &

…and in the second file named /usr/bin/msg_
connection, enter the following:

#!/bin/bash

user=slynux ; # Specify the user to which notification is to be shown

if [$# -eq 0];

then

 DISPLAY=:0 su $user -c ‘notify-send -u critical “Internet

Disconnected :(“’ ;

else

while true;

do

if [[-n $(/sbin/ifconfig ppp0 2>&1 | grep “inet addr”)]];

 then

 DISPLAY=:0 su $user -c ‘notify-send “Connected to Internet :)”’ ;

 exit 0;

fi

 sleep 1;

done

fi

In this script, we have used the notify-send utility to
display messages to the user. notify-send comes default
with Fedora 9. You may have to install it separately on
Ubuntu or other distributions.

Now, set executable permissions to both the scripts
since udev is going to execute them upon finding the
device:

chmod +x /usr/bin/evdo_connect

chmod +x /usr/bin/msg_connection

Voila! The auto dialling is configured and ready to run.
As soon as I plug or unplug EVDO now, I get notifications
as shown in Figures 1 and 2, in real time.

The procedure is the same while using any other
mobile/CDMA Net connection. You have to modify the
udev rules slightly, according to your device parameters.

Auto syncing a back-up drive
Let’s look at a typical problem: I have a back-up hard drive.
I used to back up my home directory everyday in this hard
disk. This is normally done manually so, again, let’s use
udev to automate the procedure. Again, as we did with the
EVDO modem, first plug in the external hard drive. Then

Figure 1: ‘Connected to Internet’ notification

Figure 2: ‘Internet disconnected’ notification

December 2008 | L INUX For YoU | www.openITis.com82

Introducing

run dmesg to identify the device. The following is the
dmesg output in my case:

usb-storage: device scan complete

scsi 7:0:0:0: Direct-Access HITACHI_ DK23DA-20 00J2 PQ: 0 ANSI: 0

sd 7:0:0:0: [sdb] 39070079 512-byte hardware sectors (20004 MB)

sd 7:0:0:0: [sdb] Write Protect is off

sd 7:0:0:0: [sdb] Mode Sense: 03 00 00 00

sd 7:0:0:0: [sdb] Assuming drive cache: write through

sd 7:0:0:0: [sdb] 39070079 512-byte hardware sectors (20004 MB)

sd 7:0:0:0: [sdb] Write Protect is off

Now, collect suitable keys to match the device using
the following command:

udevinfo -a -p $(udevinfo -q path -n /dev/sdb) | more

The output in my case was:

 looking at device ‘/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/

host7/tar

get7:0:0/7:0:0:0/block/sdb’:

 KERNEL==”sdb”

 SUBSYSTEM==”block”

 DRIVER==””

 ATTR{dev}==”8:16”

 ATTR{range}==”16”

 ATTR{removable}==”0”

 ATTR{size}==”39070079”

 ATTR{capability}==”12”

 ATTR{stat}==” 51 285 456 340 1 0 8

 9 0 278 349”

 looking at parent device ‘/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-

1:1.0/ho

st7/target7:0:0/7:0:0:0/block’:

 KERNELS==”block”

 SUBSYSTEMS==””

 DRIVERS==””

 looking at parent device ‘/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-

1:1.0/ho

st7/target7:0:0/7:0:0:0’:

 KERNELS==”7:0:0:0”

 SUBSYSTEMS==”scsi”

 DRIVERS==”sd”

 ATTRS{device_blocked}==”0”

 ATTRS{type}==”0”

 ATTRS{scsi_level}==”0”

 ATTRS{vendor}==”HITACHI_”

 ATTRS{model}==”DK23DA-20 “

Now formulate a matching rule as the following and
write to a rule file [we’ll call it /etc/udev/rules.d/100-
backupdisk.rules]:

SUBSYSTEM==”block”, ATTR{removable}==”0”, ATTR{size}==”39070079”,

SYMLINK+=”backupdisk”, RUN+=”/usr/bin/backup”

We have an action script /usr/bin/backup, which is
called when a match is found. Write a bash script with the
following contents:

#!/bin/bash

backup_dir=/home/slynux # Specify the directory to backup

user=slynux # The user to whom which the message is to be displayed

mount /dev/backupdisk /mnt/backups;

rsync -a $backup_dir /mnt/backups/$(date +%d-%m-%Y)/ ;

umount /mnt/backups ;

DISPLAY=:0 su $user-c ‘notify-send “Backup Complete”’;

Notice that the script mounts the external disk under /
mnt/backup. So, make sure you create that directory as well.

Following this, make the script executable as follows:

chmod +x /usr/bin/backup

That’s it! Now, every time you connect the external
disk, it starts the back-up procedure using rsync
automatically. Once the procedure ends, you will get a
pop-up notification on your desktop as well (Figure 3).

You can tweak around a bit to make this back-up drive
encrypted as well. However, I’ll leave you to try it out
yourself.

So, that’s all for now. Have fun with udev, and happy
hacking!

By: Sarath Lakshman is an 18 year old hacker and free
software enthusiast from Kerala. He loves working on the
GNU/Linux environment and contributes to the PiTiVi video
editor project. He is also the developer of SLYNUX, a distro
for newbies. He is currently studying at Model Engineering
College, Cochin. He blogs at www.sarathlakshman.info

Figure 3: Back-up completed notification

