
Sed was written for UNIX by Lee E McMahon of
Bell Labs in 1974, inspired by Perl’s text-processing
capabilities. It can be used for simple text operations as

well as complex programs. Typical uses of Sed are simple text
replacement, testing for sub-strings, complex text replacement
with regular expressions, selective printing of text in a file,
finding text described by regular expressions in a large text
file, and solving text manipulation problems by using data
structures like stack and queue.

Sed is available with all GNU/Linux distributions; there
are also versions for Mac OS X and MS Windows. You can
provide the input to Sed via a filename given as an argument,
or via standard input (stdin). Let’s look at a few simple uses
of Sed that you can try out in a terminal window:

$ echo This is a line of text. | sed ‘s/text/replaced text/’

This is a line of replaced text.

In the above one-liner, we passed data into standard input.
In ‘s/text/replaced text/’, the initial s stands for ‘substitute’;
the ‘/’ is a delimiter. Substitution has two parts: the text to be
found, and the replacement text. In this case, ‘text’ is the text
to find, and ‘replaced text’ is what must be substituted; these
are also separated by the ‘/’ delimiter.

$ seq 10 | sed ‘/[049]/d’

1

2

3

5

6

7

8

The seq command outputs a sequence of numbers, one
to a line. For more information, run man seq. In the above
code snippet, we have a match pattern—the set of numbers
0, 4 and 9—and ‘d’ specified for the action of deletion. Every
matching line (containing any number from the set) is thus
deleted—removed from the output. You can try different
sequences—for example, seq 99 120 | sed ‘/[049]/d’, to
understand the operation.

A peek into regular expressions
‘Regular expressions’ (often shortened to ‘regex’) is a
language used to represent patterns for matching text. Regular
expressions are the primary text-matching schema in all text-
processing tools, including Sed. If you are already familiar
with these, you can skip this section.

UNIX-like operating systems have numerous powerful utilities accessible via the
command-line and shell-scripting, which are flexible enough to operate in a variety
of problematic domains. Text processing is one of these. Among the many small,
beautiful and efficient tools is Sed (the stream editor). You will love it, once you master
the skill of using and writing Sed scripts. This article starts with its basics and goes on
to solving different text-processing tasks.

Part—1

62 | April 2011 | liNUX For YoU | www.linuxForU.com

Open Gurus Let 's Try

The following table contains the basic elements, along
with description and examples.

regex Description Example

^
The start-of-line
marker.

^tux matches any line
that starts with tux.

$
The end-of-line
marker.

tux$ matches any line
that ends with tux.

.
Matches any one
character.

Hack. matches
Hack1, Hacki but not
Hack12, Hackil; only
one additional char-
acter matches.

[]
Matches any one
of the character set
inside [].

coo[kl] matches cook
or cool.

[^]

Exclusion set: the
carat negates the set
of characters in the
square brackets; text
matching this set will
not be returned as a
match.

9[^01] matches 92,
93 but not 91 and 90.

[-]
Matches any character
within the range speci-
fied in [].

[1-5] matches any
digits from 1 to 5.

?
The preceding item
must match one or
zero times.

colou?r matches
color or colour but
not colouur.

+
The preceding item
must match one or
more times.

Rollno-9+ matches
Rollno-99, Rollno-9
but not Rollno-.

*
The preceding item
must match zero or
more times.

co*l matches cl, col,
coool.

()
Creates a sub-string in
the regex match.

Explained below, in
the section ‘Sub-
string match and
back-referencing’.

{n}
The preceding item
must match exactly n
times.

[0-9]{3} matches any
three-digit number.
This can be expand-
ed as:
 [0-9][0-9][0-9].

{n,}
Minimum number of
times that the preced-
ing item should match.

[0-9]{2,} matches
any number that is
two digits or more in
length.

{n, m}

Specifies the minimum
and maximum number
of times the preceding
item should match.

[0-9]{2,5} matches
any number that is
between two and five
digits in length.

|
Alternation—one of
the items on either
side of | should match.

Oct (1st|2nd)
matches Oct 1st or
Oct 2nd.

\

The escape character
for escaping any of
the special characters
given above.

a\.b matches a.b
but not ajb. The dot
is not interpreted as
the special ‘match
any one character’
regex shown above,
but instead a literal
dot (period) ASCII
character is sought to
be matched. Another
example: if you’re
searching for the US
currency symbol ‘$’,
and not the end-
of-line marker, you
must precede it with
a back-slash, like
this: \$

There are a few character classes, called POSIX
classes, in the format [:name:] that can be conveniently
used, instead of spelling out the character set each time.
Note that, as shown in the example column, you need to
enclose the class itself in another pair of square brackets.
For example:

$ echo -e “max\nOR\nMatrix” | sed ‘/[:alpha:]/d’

OR

$ echo -e “max\nOR\nMatrix” | sed ‘/[[:alpha:]]/d’

$

In the first case, the set is interpreted literally—the
words ‘max’ and ‘matrix’ are deleted because they contain
‘a’, one of the letters in the character set. In the second
command, with another pair of square brackets around the
class, all input lines are deleted, because all lines contain (at
least one) alphabet.

Regex Description Example

[:alnum:] Alphanumeric characters [[:alnum:]]+

[:alpha:]
Alphabet character (lower-
case and upper-case)

[[:alpha:]]{4}

[:blank:] Space and tab [[:blank:]]*

www.linuxForU.com | liNUX For YoU | April 2011 | 63

Open GurusLet 's Try

[:digit:] Digit [[:digit:]]?

[:lower:] Lower-case alphabet [[:lower:]]{5,}

[:upper:] Upper-case alphabet ([[:upper:]]+)?

[:punct:] Punctuation [[:punct:]]

[:space:]
All white-space characters
including newline, carriage
return, and so on.

[[:space:]]+

Meta-characters are a type of Perl-style regular
expressions that are supported by a subset of text-processing
utilities. Not all utilities will support the following notations.

Regex Description Example

\b Word boundary
\bcool\b matches only
cool and not coolant.

\B
Non-word bound-
ary

cool\B matches cool-
ant but not cool.

\d
Single digit char-
acter

b\db matches b2b but
not bcb.

\D Single non-digit
b\Db matches bcb but
not b2b.

\w
Single word char-
acter (alnum and _)

\w matches 1 or a but
not &.

\W
Single non-word
character

\w matches & but not
1 or a.

\n Newline \n matches a new line.

\s Single white-space
x\sx matches x x but
not xx.

\S Single non-space
x\Sx matches xkx but
not x x.

\r Carriage return
\r matches carriage
return.

The above tables can be used as a reference while
constructing regular expression patterns.

Let us go through a few examples of regular expressions.

Treatment of special characters
Regular expressions use some characters such as $, ^, ., *,
+, {, and } as special characters. But what if we want to
use these characters as non-special characters (normal text
character)? Let's see an example. regex: [a-z]*.[0-9]

How is this interpreted? It can be zero or more [a-z] ([a-
z]*), then any one character (.), and one character in the set
[0-9] such that it matches abcdeO9. It can also be interpreted
as one of [a-z], then a character *, then a character . (period),
and a digit such that it matches x*.8. In order to overcome this
problem, we precede the character with a forward slash "\"
(doing this is called "escaping the character"). The characters
such as * that have multiple meanings are prefixed with "\" to
make them into a special meaning or to make them non special.
Whether special characters or non-special characters are to be
escaped varies depending on the tool that you are using.

In short the term special meaning means that a
character is considered as meaningful interpretation other
than its character ascii value. For example a* means a, aa,
aaa... Here * has special meaning since its not iterpreted as
ascii character '*'. Certain characters to be escaped using \
to give special meaning while some others are by default
taken as special meaning (Eg. *). To use it as regular
ascii meaning, it should be escaped. Here is small list of
characters having special meaning with escaping.

Special meaning:
\+, \{, \}, \(, \), \?
Characters that are by default special (You need to

escape these inorder to use as regular ascii):
*, ., ^, $, [,]
To match any line containing ONLY the word test, and

no other characters on it, use ‘^test$’. This is interpreted as
‘start of line marker’ followed by ‘test’ followed by ‘end of
line marker’.

Another good example is to extract e-mail addresses from
the given text. An e-mail address has the format username@
domain.root. We can formulate the regular expression as:

[A-Za-z0-9.]+@[A-Za-z0-9.]+\.[a-zA-Z]{2,4}. The
[A-Za-z0-9.]+ before @ states that the given character
class should occur one or more times, just as after the
@. At the end of the e-mail address, we have the TLD
(top-level domain), which can be two to four characters in
length, as specified by {2,4}.

Points to remember
In Sed, ‘one or more’ (+) is always prefixed with the back-
slash escape character if it does not occur after a character set/
class, while ‘zero or more’ (*) is not thus prefixed.

We can do an inverse match using /
PATTERN/!{statements}. That is, include the bang (!) after the
slash after PATTERN.

Sed essentials
Learning Sed involves understanding the basic concepts,
and gaining experience with practice. Hence, I will go
through different usage contexts and the basic concepts in the
following section. Real scripts where Sed can be used will
also be explained.

Text replacement with Sed
Sed processes the text input line by line, by default. To
perform stream editing on a file, specify the operation,
followed by the filename. For example:

$ sed ‘s/PATTERN/REPLACEMENT TEXT/’ filename

We can also provide the contents of a file to Sed on its
standard input, as follows:

$ cat filename | sed ‘s/pattern/replace_string/’

64 | April 2011 | liNUX For YoU | www.linuxForU.com

Open Gurus Let 's Try

To write the output of the Sed command to a file, use shell
redirection, as follows:

$ sed ‘s/MATCH/REPLACE/’ filename > output.txt

To save the changes to the input file itself, use the -i
option:

$ sed -i ‘s/MATCH/REPLACE/’ filename

In text replacement operations such as the above example,
only the first occurrence of the matched text in a line is
replaced. If you have multiple occurrences of the search
pattern on a single line, and need to replace all occurrences,
append the ‘g’ (global replacement) switch as follows:

$ sed ‘s/MATCH/REPLACE/g’ filename

However, sometimes we may not need to replace the first
‘N’ occurrences, but replace only the rest of them. There is an
inbuilt option to ignore the first ‘N’ occurrences and replace
from the ‘N+1th’ occurrence onwards. This is easiest to
explain with examples, which make it very clear:

$ echo this thisthisthis | sed ‘s/this/THIS/2g’

this THISTHISTHIS

$ echo this thisthisthis | sed ‘s/this/THIS/3g’

this thisTHISTHIS

$ echo this thisthisthis | sed ‘s/this/THIS/4g’

this thisthisTHIS

Deleting lines based on how they match
To remove lines that are matched by a regular expression
pattern, use the ‘d’ suffix. For example, $ sed ‘/^$/d’ filename
removes all blank lines present in the file from the output.

Printing only pattern-matched lines
We have seen different examples like the substitution of
text. In the above examples, Sed makes some changes to
matched lines, and prints them—or deletes them. What if
we want to print only lines that match the pattern, and print
only changed text? To print only matched lines, use the -n
(no output/silent) flag, and attach a p suffix after the pattern,
to cause printing of lines that match. Let’s take a sample file
named paragraph.txt:

1. introduction

some text goes here. 2nd line.

2. next heading

some text goes here. 2nd line. 3rd line.

On this file, we run the following command:

$ sed -n ‘/[0-9]\+\./p’ paragraph.txt

1. introduction

2. next heading

Thus, we printed only titles (lines with numbering) from
the file.

If we want the whole input text printed, with matched text
printed twice, we can use /p without the -n flag. Try it out: $
seq 20 | sed ‘/0/p’. Lines with 10 and 20 (containing 0) are
printed twice.

Matched string reference in replacement text
In Sed, the first block of substitution is the pattern to be
matched. Sometimes we need to replace matched text with
some additional characters. Here, we can reference the
matched text using the ‘&’ notation in the replacement block.
For example, to add a space between every character in a line,
use the following code:

$ echo this is a line of text | sed ‘s/./& /g’

t h i s i s a l i n e o f t e x t

Each matched character is replaced with itself plus a
space. The /g option applies this to every character matched
in the line.

Sub-string match and back-referencing
We have seen how to reference and use the entire matched
pattern in the replacement text. Now, how can we use sub-
strings of the matched pattern in the replacement text? For
example, we have (matched text): Lakshman Sarath Mr.
This is last name, first name, and salutation. Let’s suppose
we want to rewrite this line to read with the salutation first,
then the first name, and then the last name (think of several
hundred such names in a file, which are in the ‘wrong’
order). If we can match each word as a sub-string, we can
reference these sub-strings individually, and can specify a
new order for them in the replacement text.

Sub-strings can be specified by using grouping
operators—parentheses—like ‘\(SUBSTR\)’. They are
referenced (in replacement text) by \N, where N is the Nth
sub-string found. The grouping operators ‘(‘ and ‘)’ must
be prefixed with the \ escape character. Let us use back-
referencing to solve our problem of re-ordering the parts
of a name:

$ echo Lakshman Sarath Mr | sed ‘s/\(\w\+\) \(\w\+\) \(\w\+\)/\3

\2 \1/’

Mr Sarath Lakshman

The above (and other Sed scripts) may look complex and
hard to understand initially. But once you break it up and
analyse it, it is simple to understand. \w is the regex used to
match character (refer to Table 3 above) and \+ to specify one
or more characters. Each of the words is grouped with \(and

www.linuxForU.com | liNUX For YoU | April 2011 | 65

Open GurusLet 's Try

\). In replacement text, \3 is the third sub-string/group found;
\2 the second, and \1 the first match.

Quoting
For Sed scripts, we can use single quotes or double quotes.
When single quotes are used (sed ‘STATEMENTS’ file), it
will not expand shell variables. But with double quotes (Sed
“STATEMENTS” file) Bash will expand shell variables before
passing the arguments to Sed. Therefore, we should use
double quoting if we need to pass values into the Sed script
from Bash. For example:

$ replace_txt=”REPLACED”

$ match=”MATCH”

$ echo This is a MATCH text | sed “s/$match/$replace_txt/”

This is a REPLACED text

Combining multiple Sed statements
Combining multiple Sed commands using a pipe (sed
‘expression’ | sed ‘expression’) can be replaced with sed
‘expression; expression’.

Restrict range of affected lines with patterns and
line numbers
We can specify the range of line numbers for which text
manipulation operations are to be performed. It is also
possible to specify a range of lines by specifying a start-line
pattern and an end-line pattern. To specify a range of line
numbers, use something like what’s shown below:

$ seq 30 | sed ‘10,20 s/[0-9]$//’

In the output, you can see that in lines 10-20, the last digit
has been removed (replaced with an empty string). You can
specify the ending line number to be the last line in the file by
using a $ character as follows (10,$):

$ seq 30 | sed ‘10,$ s/[0-9]$//’

Now, let us look at how to specify ranges of lines by using
patterns. Let’s suppose that I need to apply a text operation to
a range of text that is between one line with the word ‘start’,
and another with the word ‘end’, in a sample file (call it
eg.txt) with these contents:

hello

next

start

line1

line2

end

next

We run this command, and observe in the output that only
the desired lines have been modified:

$ sed ‘/start/, /end/ s/.*/& modified/’ eg.txt

hello

next

a line with start modified

line1 modified

line2 modified

a line with end modified

next

Here, /START_PAT/, /END PAT/ is used to identify the
text range to be operated on. You can mix line numbers and
text matches while specifying ranges; /START_PAT/, $ will
operate on text between START_PAT and the end of file,
while 1, /END_PAT/ will operate from the first line to a line
containing END_PAT.

Grouping commands into subgroups
Grouping Sed statements according to contexts is a very
useful operation. We can perform operations by matching
some pattern of the input, then apply another text operation
after the pattern is matched, after which we can again operate
on a smaller subgroup, and so on. For example, here is a
problem: in the file eg2.txt (contents listed below) I may
change only text between the 3rd and 8th lines. In that range, I
must operate on (the range of) all lines between the patterns
‘single’ and ‘double’. In this nested range, I must replace all
the lines’ text with #:

eg2.txt:

first line

2nd line

3rd line

a word single

next line

next lines

double

test line

last line

After creating the text file, we run the following command
on it and observe that the output satisfies the constraints and
does the required operation:

$ sed ‘3,8 { /single/,/double/ { s/.*/#/ } }’ eg2.txt

first line

2nd line

3rd line

#

#

#

#

test line

last line

66 | April 2011 | liNUX For YoU | www.linuxForU.com

Open Gurus Let 's Try

While grouping, we can also negate the match condition
for a group by suffixing the text match condition with the !
operator, like this: /TEXT/ !{ statements }. Such a group is
executed whenever the pattern does not match /TEXT/.

Read and write from files using Sed
We can read or write to an intermediate file by specifying
file-names and match/replace text in the sed script. Let us
look at an example. We set up files as follows (file name
followed by content):

file1.txt:
A line from file1

file2.txt:
A line from file2

list.txt:
FILE1

The file list.txt is our input file. While reading from it,
if a particular match occurs, and if we wish to read in the
contents of another file to replace the matched pattern, we
can issue the following code:

$ cat list.txt | sed ‘/FILE1/ { r file1.txt

d }

/FILE2/ { r file2.txt

d }’

r filename is the command used. Note that when read (r)
is used after the filename, there should be a new line. That is
why, instead of continuing the command on the same line,
later commands are given on new lines. Here, d is used to
remove the matched text read from list.txt. Experiment with
this: remove the ‘d’ commands; edit list.txt and insert ‘FILE2’
on the first line (before the ‘FILE1’ line)... run the command
after each of your changes and see what effect it has.

We can write conditionally matched patterns or replaced
text to a file, as follows:

$ seq 100 | sed -n ‘30,33 { w extracted.txt

}’

$ cat extracted.txt

30

31

32

33

Like the read command ‘r’ operates on files, we can use
the write command ‘w’ to write matched text to a specified
file. In the above sed script, it matches line numbers 30 to 33,
which are written into a file named extracted.txt. As before,
the file-name is immediately followed by a newline. The -n
option is given to prevent Sed from printing input lines to
standard output.

Quit operator
Sed reads input line by line and processes it. We can stop
the execution of Sed at some particular matching line
and quit, so that the following lines will not be read and
processed, using the ‘q’ command. For example, we quit
this script after line 3:

$ seq 10 | sed ‘3 q’

1

2

3

In this article, we have come across basic concepts and
building blocks that can be used to solve complex problems.
By making proper use of what we have learned in this article,
it is possible to break up text-processing tasks into smaller,
simpler tasks, and solve them. Sed has more interesting features
and data structures that add more text-processing capabilities.
We will learn about data structures, operators and a few text-
processing problems in the second part of this article, next
month. Happy hacking, till we meet again!

By: Sarath Lakshman

The author is a hacktivist of Free and Open Source
Software from Kerala. He loves working on the GNU/Linux
environment and contributes to the Pardus Linux distro
project. He has recently authored the Linux Shell Scripting
Cookbook, which gives insights into shell scripting using 119
‘recipes’. He can be reached via his website http://www.
sarathlakshman.com.

1, Vikas Permises, 11 Bank Street, Fort, Mumbai, India - 400 001. Mobile: 09326087210. info@technoinfotech.com1, Vikas Permises, 11 Bank Street, Fort, Mumbai, India - 400 001. Mobile: 09326087210. info@technoinfotech.com

www.linuxForU.com | liNUX For YoU | April 2011 | 67

Open GurusLet 's Try

