
40  |  February 2009 | LINuX For you | www.openITis.com

For U & Me  | Let's Try   Let's Try | For U & Me

I
n this article, we’ll explore
networking under GNU/Linux.
You’ll find it interesting to manage
the entire network through

certain valid keystrokes known as commands.
Imagine that you have to access the contents
of several other machines from a mount point
in your machine. Then imagine shutting down,
rebooting, and installing applications on those
remote machines, all at one time? Could you
configure the WLAN and LAN interfaces from
the CLI? This tutorial gives you some insights to
the exciting bytes on controlling your network
under GNU/Linux.

First we will learn the ‘Hello World’ of a
networked machine.

Let us ping!
ping is a universal command that is available on
every operating system to test the reachability
of a network. When you shoot your terminal
with the ping command and an IP address
as its argument, the machine will try to send
some bits of raw data towards the machine
owning that IP address. If some machine
exists with that IP address, it will send back
certain bits. Thus the machine receives the bits
and it confirms that a path is available from
the current machine to the other through a
network. We can check the existence of certain
machines on the network by just pinging.

To see which machines are up in the
current network, let’s write a bit of shell script.
Open vim as the root:

vim /usr/bin/netup.sh

...and key in the following lines in it:

#/bin/bash

for i in 192.168.1.{1..255}; // checks 192.168.1.x class of IPs.

do

ping -c2 $i > /dev/null;

[$? -eq 0] && echo $i is up.

trap “exit” SIGINT // To force exit when Ctrl+C keystroke is

applied.

done

Save the file, and make it executable by
running the following command:

chmod a+x /usr/bin/netup.sh

Now, run the script as:

[slynux@gnuxbox ~]$ netup.sh

192.168.1.1 is up.

192.168.1.3 is up.

192.168.1.4 is up.

Configuring your network
Now, let us look at how to configure your
machine on the network. You can configure
it using two methods. It can be configured
manually by the ifconfig command for static
IP addressing or it can be done via the DHCP
(Direct Host Control Protocol).

Static IP addressing is the one that you
explicitly instruct the system to use by giving
an IP address for a given Ethernet or wireless
interface. In case you’re using the DHCP, simply
issuing the dhclient command will fetch the

Recipes for

Networking
It’s always fun to try out different hacks under the GNU/Linux freedom platform.
The pride of becoming a command-line wizard makes everyone stay close to the
CLI. Moreover, the CLI vests you with the ultimate power to control your machine.

For U & Me  | Let's Try   Let's Try | For U & Me

www.openITis.com | LINuX For you | February 2009 | 41

system an available IP address from the DHCP server in your
network. Note that it may not be the same IP address that
your machine fetches each time you issue dhclient.

Interface cards
Machines are networked either via network cables or using
wireless protocols. LAN cards used for networking are known
as Ethernet and wireless LAN (WLAN) cards. We interface
the network via this outlet. In *nix platforms, Ethernet cards
or WLAN cards are denoted as eth0, eth1, etc, or wlan0,
wlan1, etc, respectively.

ifconfig
We have ifconfig, a.k.a the interface config, for setting up
a network on the machine. To get information about the
availability of interface devices available on the current
machine, open a terminal and execute the following as
the root:

[slynux@gnuxbox ~]# ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:1C:23:FB:37:22

 inet6 addr: fe80::21c:23ff:fefb:3722/64 Scope:Link

 UP BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:9724 errors:0 dropped:0 overruns:0 frame:0

 TX packets:2720 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2400589 (2.2 MiB) TX bytes:645396 (630.2 KiB)

 Interrupt:17

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:76320 errors:0 dropped:0 overruns:0 frame:0

 TX packets:76320 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:87151068 (83.1 MiB) TX bytes:87151068 (83.1 MiB)

wlan0 Link encap:Ethernet HWaddr 00:1C:BF:87:25:D2

 inet addr:192.168.1.143 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80::21c:bfff:fe87:25d2/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:45302 errors:0 dropped:0 overruns:0 frame:0

 TX packets:37510 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:31091293 (29.6 MiB) TX bytes:9734025 (9.2 MiB)

Here I have three interfaces -- eth0, lo and wlan0, where:
eth0 corresponds to the Ethernet card
lo corresponds to a loopback device that points to the
localhost network
wlan0 corresponds to the wireless LAN card

Static IP addressing
For static IP addressing, issue the following command
as the root:

ifconfig <device name> <ip address>

For example:

ifconfig eth0 192.168.0.2

ifconfig -a gives you details of all interface devices
and configurations. In order to receive details of only one
Ethernet device, execute ifconfig eth0. The following is an
example output:

[root@gnubox slynux]# ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:1C:23:FB:37:22

 inet addr:192.168.0.2 Bcast:192.168.0.255 Mask:255.255.255.0

 inet6 addr: fe80::21c:23ff:fefb:3722/64 Scope:Link

 UP BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:9724 errors:0 dropped:0 overruns:0 frame:0

 TX packets:2720 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2400589 (2.2 MiB) TX bytes:645396 (630.2 KiB)

 Interrupt:17

Now, let us go about setting the subnet mask. This is done
easily with ifconfig, as follows:

ifconfig eth0 192.168.0.2 -netmask 255.255.255.0

Now that the IP address and subnet mask is configured
(or reconfigured), how do you get your Ethernet up (i.e.,
available) and down? The ifup and ifdown commands help
you with that as follows:

ifup eth0

ifdown eth0

Wireless networking
In order to hack a wireless card, we have another utility
called iwconfig. It works similar to ifconfig, but it has lots of
additional features that are bonded to wireless cards. If we
are using a wireless network with static IP, we can attach our
wireless card interface to a network as follows:

iwconfig wlan0 essid slynux

…or:

iwconfig wlan0 essid slynux key 8c140b2037

…where ‘slynux’ is the ESSID (that is, the name
wireless network) and ‘8c140b2037’ is the security key.
Of course, you need to replace these variables with the
values that hold good in your network. You can also
scan and check the availability of wireless network(s) in
your vicinity using the iwlist command as follows:

A

For U & Me  | Let's Try 

42  |  February 2009 | LINuX For you | www.openITis.com

 Let's Try | For U & Me

[root@gnuxbox~]# iwlist wlan0 scan

wlan0 Scan completed :

 Cell 01 - Address: 00:08:5C:52:E9:83

 ESSID:”slynux”

 Mode:Master

 Channel:11

 Frequency:2.462 GHz (Channel 11)

 Quality=92/100 Signal level:-39 dBm Noise level=-78 dBm

 Encryption key:off

 Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s

 24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s

 12 Mb/s; 48 Mb/s

 Extra:tsf=00000000fc021187

The above command will list out the various wireless
networks available with a number of properties.

Then we can set the IP for the interface card using the
ifconfig command itself:

ifconfig wlan0 192.168.0.5

If you are using dynamic addressing, you can obtain the
IP address as follows:

dhclient wlan0

The settings that you’ve configured with the ifconfig
tool are available until the system reboot. But it’s a waste of
time if you need to configure it on every system start. And
hence we take the aid of network configuration scripts. On
an Ubuntu (or any other Debian-based) system, this file
is located at /etc/networks/interfaces, and contains data
similar to the following:

auto lo

iface lo inet loopback

iface eth0 inet static

address 164.164.32.101

netmask 255.255.255.240

gateway 164.164.32.97

It is necessary to learn this scripting in order to play
with your network. The syntax for these are as follows:

1. Add the following lines if you want to configure eth0 as
the DHCP:

auto eth0

iface eth0 inet dhcp

2. Add the following files if you want to configure
static IP:

auto eth0

iface eth0 inet static

address <ip_address>

netmask <netmask>

gateway <gateway_ip>

3. If it is a wireless network, add the following lines along
with the above lines:

wireless-essid <network_name>

wireless-key <key>

Now, to restart the network daemon, execute the
following as the root:

/etc/init.d/network restart

Spoofing a MAC ID
It is a real hassle for cable Internet customers that they
are restricted to using a single machine for Internet
access. If you want to plug your laptop in your friend’s
cable Internet connection, you have to call the service
provider to refresh the MAC address.

The MAC address is permanent to the hardware
and cannot be changed. Since we operate the hardware
via the software abstraction layer, it is quite possible to
do some software-level cheating for the network card’s
MAC ID. We can simply spoof it to some other MAC
addresses.

You can obtain the original MAC ID from the ifconfig
output. Mine is as follows:

eth0 Link encap:Ethernet HWaddr 00:1C:23:FB:37:22

Now, let’s change the last part of the MAC ID from
22 to 23:

ifconfig eth0 hw ether 00:1C:23:FB:37:23

Now, run ifconfig again:

[root@gnubox slynux]# ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:1C:23:FB:37:23

 inet addr:192.168.0.2 Bcast:192.168.0.255 Mask:255.255.255.0

 BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

 Interrupt:17

Easy enough? Well, let's consider the following
instance: suppose you are in a Wi-Fi campus and the
access to the wireless network is restricted using MAC
addressing. You can simply look at your friend’s laptop
MAC ID and spoof it. Yes! You are now free to access the
network. Have fun!

For U & Me  | Let's Try   Let's Try | For U & Me

www.openITis.com | LINuX For you | February 2009 | 43

DNS (Domain Name Service)
DNS is responsible for name resolution. When you point
your browser to www.google.com, it points to a server on
the Internet. How does that happen? As you are aware, all
networked computers are assigned with IP addresses. But
how do you access the Web page hosted in Google’s remote
machine by simply typing a name like google.com?

That phenomenon is achieved using domain name
resolution. There are some servers on the Web called
name servers (or DNS) that resolve certain names
to corresponding IP addresses, like google.com to its
corresponding IP address, in our case. So, we should have
the IP addresses of the DNS servers (generally provided by
the Internet service provider) handy so that we don’t have
to remember everyone else’s when we browse the Web.
When we point our browser to google.com, it consults
one of these name servers to find out the IP address and
thus load the Web page. But where do we configure the IP
addresses of these name servers?

If your network is configured with DHCP, there is no
need to specify the name server explicitly. For static IPs,
it is, however, necessary. We enter the DNS servers’ IP
addresses in the /etc/resolv.conf file. Mine looks like the
following:

nameserver 208.67.222.222

nameserver 208.67.220.220

Note that you don’t really need to use the DNS
addresses provided by your ISP. For safety purposes, I
use OpenDNS—the IP addresses are listed in the above
snippet. You can learn more on why OpenDNS is a much
safer bet at www.opendns.org.

SSH (Secure Shell)
SSH can be defined as the blood of *nix networks.
SSH enables users and administrators to make remote
logins to other machines that are connected through
any kind of network. If you know the user name,
password and IP address of another machine on the
network, you can remotely log in to that machine and
work on it as if you are actually working in front of
that machine. The following is an example in which
I’m authenticating to a system with the IP address of
192.168.1.3 as the user test:

[root@gnubox ~]# ssh test@192.168.1.3

The authenticity of host ‘192.168.1.3 (192.168.1.3)’ can’t be established.

RSA key fingerprint is 9f:61:ae:ac:8f:75:bb:3a:02:4a:f4:6c:7d:b9:0d:07.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘192.168.1.3’ (RSA) to the list of known hosts.

test@192.168.1.3’s password:

-sh-3.2$ echo I am on 192.168.1.3 Machine

I am on 192.168.1.3 Machine

-sh-3.2$

You can open the CD tray of the other machine, close
the tray, shutdown, reboot the machine -- depending on
the privileges the user name you’ve logged in with, has.

sftp is an extension to the ssh protocol that helps us to
use the SSH connection to transfer files between machines.
The following is an example:

[root@localhost ~]# sftp test@192.168.1.3

Connecting to 192.168.1.3...

test@192.168.1.3’s password:

sftp> ls

Desktop Documents Download Music Pictures Public Templates

Videos a.out test.bin file.cpp t.c

sftp> get t.c

Fetching /home/test/t.c to t.c

/home/test/t.c 100% 239 0.2KB/s 00:00

sftp>

To download a file from the remote machine we use
the get command, and to upload a file, we use put. In the
above snippet you can see that I’m downloading a file
named t.c using the get command, after logging in to the
remote machine using sftp.

sshfs is another extension to SSH, which empowers you
to mount directories on a remote machine as a filesystem
to a specified mount point:

root@localhost ~]# sshfs test@192.168.1.3:/home/test /mnt/test

test@192.168.1.3’s password:

In the above snippet, I’m mounting the home directory
of the user ‘test’ on 192.168.1.3 to my local machine under
the /mnt/test directory.

Proxy server configuration
Many of us on a college campus or office network access
the Internet through a proxy server. How do you set the
proxy server details in your shell environment? You can set
the proxy for different protocols as follows:

export http_proxy=”http://192.168.0.1:3128” ; // HTTP proxy

export ftp_proxy=”192.168.0.1:3128” ; //FTP proxy

If you want these settings to be permanent, each time
you log in add these lines to your ~/.bash_profile file.

That’s all, folks! Hope you have enjoyed learning the
secrets of networking. Happy hacking till we meet again!

By: Sarath Lakshman
The author is an 18 year old hacker and free software
enthusiast from Kerala. He loves working on the GNU/Linux
environment and contributes to the PiTiVi video editor project.
He is also the developer of SLYNUX, a distro for newbies. He
is currently studying at Model Engineering College, Cochin. He
blogs at www.sarathlakshman.info

