
N
etkit is a virtualised environment
on the top of User Mode Linux
that gives wings to your network
experimentation dreams. This

article focuses on how to get started with
Netkit, including modelling and testing
complex networks with it.

In order to master networking we need
to hack on real-time network devices such
as routers, gateways and other costlier
devices that are not always readily available.
It is a physical strain plugging in the cables,
switching on the devices, logging in to
routers, etc, apart from the logical exercise
of designing and setting up the network.
Anyone attempting all this has to be hands-
on with several devices, several interfaces,
protocols, physical interconnections, etc.

Netkit, on the other hand, is the laziest
and easiest way to learn, understand and test
a network on a virtual environment. It is also
a great teaching aid.

Using the Netkit toolkit, we can create
as many virtual machines as we need.

They will be displayed as terminals. Each
of the terminals can be programmed using
different *nix tools to make them work as
different network devices such as routers, a
gateway, etc.

What can Netkit do?
It is never advisable to conduct experiments
on the primary network of an entity, since
it hosts services that are critical for its
operations. On the other hand, network
equipment could be expensive, and even for
simple experiments, sufficient equipment
should be available in the same test bed.

Under the circumstances, Netkit—a
system to emulate computer networks by
creating a real-time environment—comes
to the rescue. The one-line description
of Netkit is: “The poor man’s system for
experimenting.” It has been developed and
maintained by the Network Research Group
of the Roma Tre University (in Rome, Italy).

The virtualised environment for the
Netkit toolkit is based on UML (User Mode

Networking is very interesting and I’m sure many of us would like to experiment
with it, but the unavailability of laboratories with sufficient computers is
a stumbling block. What if I tell you that you can turn any computer into a
network device at no extra cost?

Netkit
The Networking Sandbox

40  |  AUGUST 2009 | LINUX For YoU | www.LinuxForU.com

Open Gurus  |  How To __

www.LinuxForU.com | LINUX For YoU | AUGUST 2009 | 41

__ How To  |  Open Gurus

Linux—user-mode-linux.sourceforge.net). Each emulated
network device is a virtual GNU/Linux system. Since
GNU/Linux is shipped with software supporting most of
the network protocols, any machine can be configured to
act as a bridge/switch or as a router. Each virtual machine
has a console (terminal window) with a root shell.

Installing and setting up Netkit
The hardware requirements for Netkit are pretty basic:

≥ 600 MHz CPU
~10 MB memory for each VM (depending on the VM
configuration)
~600 MB of disk space + ~1-20 MB for each VM
(depending on the usage of the VM)
As for software requirements, you'll need a GNU/Linux

installation and of course, you can download Netkit
from www.netkit.org if it’s not available in your distro’s
online software repositories. [Netkit works fine on many
distributions—see wiki.netkit.org/index.php/Status].

Download the following three files: netkit-X.Y.tar.bz2,
netkit-filesystem-FX.Y.tar.bz2 and netkit-kernel-KX.Y.tar.bz2.

Unpack them in the same location:

slynux@gnubox:~$ mkdir ~/netkit

// Follow the following order in extraction of archives

slynux@gnubox:~$ tar -xjf netkit-X.Y.tar.bz2 -C ~/netkit

slynux@gnubox:~$ tar -xjf netkit-filesystem-FX.Y.tar.bz2 ~/netkit

slynux@gnubox:~$ tar -xjf netkit-kernel-KX.Y.tar.bz2 ~/netkit

Now it requires you to set up some environment
variables to make Netkit work. Append the following lines
to your ~/.bashrc:

 export NETKIT_HOME=~/netkit

 export PATH=$PATH:$NETKIT_HOME/bin

 export MANPATH=:$NETKIT_HOME/man

You can now check your Netkit installation by opening
a new terminal running the following check_configuration.
sh bash script.

slynux@gnubox:~$ cd $NETKIT_HOME

slynux@gnubox:~$./check_configuration.sh

If it succeeds, your Netkit installation is successful.

An introduction to Netkit commands
We will now look into some of the Netkit commands used
to start, configure and monitor Netkit virtual machines
and the virtual labs.

vstart starts a new virtual machine
vlist lists the currently running virtual machines
vconfig attaches network interfaces to running VMs
vhalt gracefully halts a virtual machine
vcrash causes a virtual machine to crash
vclean is the “panic command” to clean up all Netkit

processes (including VMs) and configuration settings
on the host machine
The Netkit lab is an interesting facility that comes inbuilt

with the Netkit toolkit. While emulating a large network, it is
harder to configure each of the VMs individually, every time
you want to conduct a new experiment. Netkit lab facilities
help in setting up complex labs consisting of several virtual
machines. Here are some commands to manipulate and keep
track of the running labs:

lstart starts a Netkit lab
lhalt gracefully halts all the VMs of a lab
lcrash causes all the VMs of a lab to crash
lclean removes temporary files from a lab directory
linfo provides information about a lab without starting it
ltest allows you to run tests to check that the lab is
working properly

Starting virtual hosts
Each of the VMs represents a network device or a host. In
order to start a virtual machine with the name ‘pc1’, use
the following command:

slynux@gnubox:~$ vstart pc1

============= Starting virtual machine “pc1” =============

 Kernel: /home/slynux/netkit/kernel/netkit-kernel

 Modules: /home/slynux/netkit/kernel/modules

 Memory: 16 MB

 Model fs: /home/slynux/netkit/fs/netkit-fs

 Filesystem: /home/slynux/pc1.disk

 Hostfs at: /home/slynux

Running ==> /home/slynux/netkit/kernel/netkit-kernel modules=/home/

slynux/netkit/kernel/modules name=pc1 title=pc1 umid=pc1 mem=20M

ubd0=/home/slynux/pc1.disk,/home/slynux/netkit/fs/netkit-fs root=98:1

uml_dir=/home/slynux/.netkit/mconsole hosthome=/home/slynux quiet

con0=xterm con1=null SELINUX_INIT=0

A console terminal corresponding to pc1 will pop up.
You can create any number of virtual hosts using the vstart
command. We will use options like—eth0,—eth1 to specify
the network interface and its connection. For example:

slynux@gnubox:~$ vstart pc1 --eth0=A

slynux@gnubox:~$ vstart pc2 --eth0=A

Here we have two machines pc1 and pc2. The—eth0
argument corresponds to the network interface, while ‘A’
in the—eth0=A argument specifies the collision domain
of the network—i.e., in the above example, pc1 and pc2
are connected on the same network family as if they are
interconnected through a network hub.

If there is a pc3—vstart pc3—eth0=B—it means pc3
is connected to a different network hub and pc3 is not
reachable from pc1 or pc2. In order to bridge both hubs, we
require a router in between.

40  |  AUGUST 2009 | LINUX For YoU | www.LinuxForU.com

Open Gurus  |  How To __

www.LinuxForU.com | LINUX For YoU | AUGUST 2009 | 41

__ How To  |  Open Gurus

We can shut down the machine from outside the
virtual terminal using the command vhalt [virtual host
name]. If something goes wrong and needs the virtual
machine to be forcefully shut down, use the command
vcrash [hostname].

The—con0 argument for the vstart command will
help you in specifying the terminal to be used for a VM.
To use the same terminal in which commands are typed,
use—con0=this or if you want Konsole as the terminal,
use—con0=konsole.

Some network manipulation/config commands
The ping command is to check connectivity. We
can ping another machine on a network using its IP
address/hostname and check the connectivity by

looking at the command output. For example: ping
google.com
ifconfig is used to set the IP address for an interface.
To set the IP address of eth0, just use ifconfig eth0 <ip
address> netmask <netmask>
The route command can be used to set the routes
for an IP network. For example, route add default gw
192.168.0.1 dev eth0 sets 192.168.0.1 as the default
gateway for the interface as eth0.
You can use the tcpdump command for packet sniffing.
With this command, you can monitor the network
data packets transfer through a network interface. For
example, tcpdump -i eth0
You can use traceroute to trace the packet route. This
means that you can find out the gateways through
which a packet travels to reach its destination. For
example, traceroute mec.ac.in

Hands-on network emulation
We will now look at how to emulate simple networks using
Netkit. A network with three hosts interconnected via a
network hub is shown in Figure 1.

It is very easy to set up a network of machines
connected through a common network hub. Execute the
following commands:

slynux@gnubox:~$ vstart pc1 --eth0=A

slynux@gnubox:~$ vstart pc2 --eth0=A

slynux@gnubox:~$ vstart pc3 --eth0=A

These three commands will create three terminals,
namely Virtual Console #0 (pc1), Virtual Console #0 (pc2),
Virtual Console #0 (pc3).

Let’s list the details of active virtual machines using the
command, vlist.

slynux@gnubox:~$ vlist

USER VHOST PID SIZE INTERFACES

slynux pc1 4485 22852

slynux pc2 4944 22852

slynux pc3 5503 22852

Total virtual machines: 3 (you), 3 (all users).

Total consumed memory: 68556 KB (you), 68556 KB (all users).

slynux@gnubox:~$

Now we can set IP addresses for each of the machines
using ifconfig:

pc1# ifconfig eth0 192.168.0.1

pc2# ifconfig eth0 192.168.0.2

pc3# ifconfig eth0 192.168.0.3

Try to ping between these machines—for example,
from pc1 (with IP address 192.168.0.1), ping 192.168.0.2.

A router is a network device used to bridge two

Figure 1: A network with three hosts interconnected via a network hub

Figure 2: A network with a router to bridge two families of networks

42  |  AUGUST 2009 | LINUX For YoU | www.LinuxForU.com

Open Gurus  |  How To __

www.LinuxForU.com | LINUX For YoU | AUGUST 2009 | 43

__ How To  |  Open Gurus

networks of a different family of IP addresses. A network
with a router to bridge two families of networks is shown
in Figure 2.

We will now build a router using a virtual machine.
First, start two virtual machines with network interfaces
of different collision domains. Then set the IP addresses
of the different families. Start a virtual machine with
two interfaces of collision domains, and set IP addresses
for the interfaces.

slynux@gnubox:~$ vstart pc1 --eth0=A // PC1

slynux@gnubox:~$ vstart pc1 --eth0=B //PC2

slynux@gnubox:~$ vstart router --eth0=A --eth1=B // Router

Execute the following commands in the virtual
machines.

On R1:

router# ifconfig eth0 192.168.0.1

router# ifconfig eth1 192.168.1.1

On PC1:

pc1# ifconfig eth0 192.168.0.2

pc1# route add default gw 192.168.0.1 // Setting default gateway

On PC2:

pc1# ifconfig eth0 192.168.1.2

pc1# route add default gw 192.168.1.1 // Setting default gateway

Run the following ping tests to check if things are in
place:

pc1# ping 192.168.0.1

pc1# ping 192.168.1.1

pc1# ping 192.168.1.2

pc2# ping 192.168.1.1

pc2# ping 192.168.0.1

pc2# ping 192.168.0.2

Now execute the traceroute command to find out
the path of the network packet transfer.

On PC1:

pc1:~# traceroute 192.168.1.2

traceroute to 192.168.1.2 (192.168.1.2), 64 hops max, 40 byte packets

 1 192.168.0.1 (192.168.0.1) 4 ms 3 ms 6 ms

 2 192.168.1.5 (192.168.1.2) 1 ms 1 ms 1 ms

This means that it first passes through the gateway
192.168.0.1 and reaches the destination.

Figure 3 shows a network with two routers for

advanced routing of different addresses.
This experiment is more interesting, since we

will use two routers and a bunch of route command
executions to specify more address routes.

Let’s start two VMs with interfaces belonging to
collision domains A and C, and two routers R1 and R2
with collision domains of the interfaces A, B and B, C.

Execute the following commands:

slynux@gnubox:~$ vstart pc1 --eth0=A

slynux@gnubox:~$ vstart pc2 --eth0=C

slynux@gnubox:~$ vstart r1 --eth0=A --eth1=B

slynux@gnubox:~$ vstart r2 --eth0=B --eth1=C

On PC1:

pc1# ifconfig eth0 192.168.0.5

pc2# ifconfig eth0 192.168.3.5

r1# ifconfig eth0 192.168.0.1

r1# ifconfig eth1 192.168.2.1

r2# ifconfig eth1 192.168.2.3

r2# ifconfig eth0 192.168.3.1

Add the routes:

r1# route add -net 192.168.3.0 netmask 255.255.255.0 gw 192.168.2.1 dev

eth0

r2# route add -net 192.168.0.0 netmask 255.255.255.0 gw 192.168.2.3 dev

eth1

pc1# ping 192.168.3.5

pc2# ping 192.168.0.1

Let’s now connect a network with the host machine
gateway and access the Internet.

Each of the virtual machines used here are Debian
Sid-based GNU/Linux installations. So we can update
and install custom tools by providing connectivity

Figure 3: A network with two routers for advanced routing of different addresses

42  |  AUGUST 2009 | LINUX For YoU | www.LinuxForU.com

Open Gurus  |  How To __

www.LinuxForU.com | LINUX For YoU | AUGUST 2009 | 43

__ How To  |  Open Gurus

to the virtual machines. We can share the Internet
connection available on the host machine with the
virtual machine using an interface argument.

Use the—eth0=tap,TAP-ADDRESS,GUEST-ADDRESS
argument along with the vstart command to share
the Internet connection. TAP-ADDRESS is the address
attached with eth0 and GUEST-ADDRESS is the address
attached for a new virtual interface created in the host
machine.

The following example shows how to share an
Internet connection with the virtual machine:

slynux@gnubox:~$ vstart pc1 --eth0=tap,192.168.1.94,192.168.1.98 --

eth1=A

Now you can ping from pc1 to your Internet gateway
to check the connectivity.

Set nameserver, by executing the following
command:

pc1# echo nameserver 192.168.0.1 > /etc/resolv.conf // 192.168.0.1 is

the nameserver here.

pc1# apt-get update

You can now install additional applications to the
virtual machine by using apt-get.

pc1# apt-get install <package name>

Netkit Lab
Manually running vstart and a series of commands like
route, ifconfig, etc, becomes very difficult and complex
in the case of emulating comparatively large networks.
It also requires doing the same thing again and again
if we are to emulate the same network topology. Netkit
Lab, an add-on script, is an exciting feature of the
Netkit toolkit. You can write Netkit Lab configuration
files such that by simply executing Netkit Lab, we
can configure emulation on the network. Numerous
virtual machines can be initialised from Netkit Lab
configuration files.

Let us see how to make Netkit Lab work.
Create a directory (say, netkit_testlab) and include

the following files in the netkit_testlab directory.
lab.conf – this file consists of configuration details
about the virtual machines like interfaces and
collision domains.
<virtual_machine>.startup – this file consists of
commands to be executed initially while the virtual
machine starts.
<virtual_machine> – a blank directory with the
same name as that of the virtual machine.
Let us set up a Netkit Lab to bridge two machines

through a router with different IP address families:

slynux@gnubox:~$ mkdir netkit_testlab

slynux@gnubox:~$ cd netkit_testlab

slynux@gnubox:~/netkit_testlab$ mkdir pc1 pc2 r1

slynux@gnubox:~/netkit_testlab$ vim lab.conf

Type the following lines excluding the comments
starting with // and save the lab.conf text file:

r1[0]=”A” // specifies eth0, collision domain = A

r1[1]=”B” // specifies eth1, collision domain=B

pc1[0]=”A” // specifies eth0, collision domain=A

pc2[0]=”B” //specifies eth0, collision domain=B

Type the commands to be executed during start up
and save to a text file:

slynux@gnubox:~/netkit_testlab$ vim pc1.startup

ifconfig eth0 192.168.0.2

route add default gw 192.168.0.1

slynux@gnubox:~/netkit_testlab$ vim pc2.startup

ifconfig eth0 192.168.1.2

route add default gw 192.168.1.1

slynux@gnubox:~/netkit_testlab$ vim r1.startup

ifconfig eth0 192.168.0.1

ifconfig eth1 192.168.1.1

Now let’s start the Netkit Lab using the lstart
command:

slynux@gnubox:~$ cd netkit_testlab // change current directory to

the lab directory

slynux@gnubox:~/netkit_testlab$ lstart

In order to shut down all the machines, use the lhalt
command from the Netkit Lab directory:

slynux@gnubox:~/netkit_testlab$ lhalt

Try writing the lab config for more complex network
topologies.

Netkit is arguably the best way to start
experimenting with networking. Some universities are
already using Netkit as a teaching aid. Through the
UML-supported backbone, Netkit provides a real-time
experience on emulation on network topologies. Find
more bytes from www.netkit.org. Happy hacking till we
meet again!

By: Sarath Lakshman
The author is a Hacktivist of Free and Open Source
Software from Kerala. He loves working on the GNU/Linux
environment and contributes to the PiTiVi video editor
project. He is also the developer of SLYNUX, a distro for
newbies. He blogs at www.sarathlakshman.info

44  |  AUGUST 2009 | LINUX For YoU | www.LinuxForU.com

Open Gurus  |  How To __

