
L
arge projects can contain
thousands of lines of code,
distributed in multiple
source files, written by

many developers and arranged in several
subdirectories. A project may contain several
component divisions. These components may
have complex inter-dependencies—for example,
in order to compile component X, you have to
first compile Y; in order to compile Y, you have
to first compile Z; and so on. For a large project,
when a few changes are made to the source,
manually re-compiling the entire project each
time is tedious, error-prone and time-consuming.

Make is a solution to these problems. It
can be used to specify dependencies between

components, so that it will compile components
in the order required to satisfy dependencies.
An important feature is that when a project
is recompiled after a few changes, it will
recompile only the files which are changed,
and any components that are dependent on it.
This saves a lot of time. Make is, therefore, an
essential tool for a large software project.

Each project needs a Makefile—a script that
describes the project structure, namely, the source
code files, the dependencies between them,
compiler arguments, and how to produce the
target output (normally, one or more executables).
Whenever the make command is executed,
the Makefile in the current working directory
is interpreted, and the instructions executed to

Have you ever peeked into the source code of any of the applications you run
every day? Ever used make install to install some application? You will see make in
most projects. It enables developers to easily compile large and complex programs
with many components. It’s also used for writing maintenance scripts based on
timestamps. This article shows you how to have fun with make.

Make—a Power Tool
for Developers

make

78 | September 2010 | LINUX For YoU | www.LinuxForU.com

Developers | Let’s Try ___

produce the target outputs. The Makefile contains a collection of
rules, macros, variable assignments, etc. (‘Makefile’ or ‘makefile’
are both acceptable.)

Installing GNU Make

Most distributions don’t ship make as part of the default
installation. You have to install it, either using the package-
management system, or by manually compiling from source. To
compile and build from source, download the tarball from ftp://ftp.
gnu.org/gnu/make/make-3.75.tar.gz, extract it, and go through the
README file. (If you’re running Ubuntu, you can install make as
well as some other common packages required for building from
source, by running: sudo apt-get install build-essential.)

A sample project

To acquaint ourselves with the basics of make, let’s use a
simple C ‘Hello world’ project, and a Makefile that handles
building of the target binary. We have three files (below):
module.h, the header file that contains the declarations;
module.c, which contains the definition of the function defined
in module.h; and the main file, main.c, in which we call the
sample_func() defined in module.c. Since module.h includes
the required header files like stdio.h, we don’t need to include
stdio.h in every module; instead, we just include module.h.
Here, module.c and main.c can be compiled as separate object
modules, and can be linked by GCC to obtain the target binary.

module.h:

#include <stdio.h>

void sample_func();

module.c:

#include “module.h”

void sample_func()

{

 printf(“Hello world!”);

}

main.c:

#include “module.h”

void sample_func();

int main()

{

 sample_func();

 return 0;

}

The following are the manual steps to compile the project
and produce the target binary:

slynux@freedom:~$ gcc -I . -c main.c # Obtain main.o

slynux@freedom:~$ gcc -I . -c module.c # Obtain module.o

slynux@freedom:~$ gcc main.o module.o -o target_bin #Obtain target binary

(-I is used to include the current directory (.) as a header
file location.)

Writing a Makefile from scratch
By convention, all variable names used in a Makefile are in upper-
case. A common variable assignment in a Makefile is CC = gcc,
which can then be used later on as ${CC} or $(CC). Makefiles use
“#” as the comment-start marker, just like in shell scripts.

The general syntax of a Makefile rule is as follows:

target: dependency1 dependency2 ...

[TAB] action1

[TAB] action2

 ...

Let’s take a look at a simple Makefile for our sample
project:

all: main.o module.o

 gcc main.o module.o -o target_bin

main.o: main.c module.h

 gcc -I . -c main.c

module.o: module.c module.h

 gcc -I . -c module.c

clean:

 rm -rf *.o

 rm target_bin

We have four targets in the Makefile:
 � all is a special target that depends on main.o and

module.o, and has the command (from the ‘manual’ steps
earlier) to make GCC link the two object files into the
final executable binary.

 � main.o is a filename target that depends on main.c and
module.h, and has the command to compile main.c to
produce main.o.

 � module.o is a filename target that depends on module.c
and module.h; it calls GCC to compile the module.c file to
produce module.o.

 � clean is a special target that has no dependencies, but
specifies the commands to clean the compilation outputs
from the project directories.
You may be wondering why the order of the make targets

and commands in the Makefile are not the same as that
of the manual compilation commands we ran earlier. The
reason is so that the easiest invocation, by just calling the
make command, will result in the most commonly desired
output—the final executable. How does this work? The make
command accepts a target parameter (one of those defined in

www.LinuxForU.com | LINUX For YoU | September 2010 | 79

___ Let’s Try | Developers

the Makefile), so the generic command line syntax is make
<target>. However, make also works if you do not specify
any target on the command line, saving you a little typing;
in such a case, it defaults to the first target defined in the
Makefile. In our Makefile, that is the target all, which results
in the creation of the desired executable binary target_bin!

Makefile processing, in general
When the make command is executed, it looks for a file
named ‘makefile’ or ‘Makefile’ in the current directory. It
parses the found Makefile, and constructs a dependency
tree. Based on the desired make target specified (or implied)
on the command-line, make checks if the dependency files
of that target exist. And (for filename targets—explained
below) if they exist, whether they are newer than the target
itself, by comparing file timestamps. Before executing the
action (commands) corresponding to the desired target, its
dependencies must be met; when they are not met, the targets
corresponding to the unmet dependencies are executed before
the given make target, to supply the missing dependencies.

When a target is a filename, make compares the
timestamps of the target file and its dependency files. If the
dependency filename is another target in the Makefile, make
then checks the timestamps of that target’s dependencies.
It thus winds up recursively checking all the way down the
dependency tree, to the source code files, to see if any of
the files in the dependency tree are newer than their target
filenames. (Of course, if the dependency files don’t exist, then
make knows it must start executing the make targets from the
‘lowest’ point in the dependency tree, to create them.)

If make finds that files in the dependency tree are
newer than their target, then all the targets in the affected
branch of the tree are executed, starting from the ‘lowest’,
to update the dependency files. When make finally returns
from its recursive checking of the tree, it completes the final
comparison for the desired make target. If the dependency
files are newer than the target (which is usually the case),
it runs the command(s) for the desired make target.
This process is how make saves time, by executing only
commands that need to be executed, based on which of the
source files (listed as dependencies) have been updated, and
have a newer timestamp than their target.

Now, when a target is not a filename (like all and clean in
our Makefile, which we called ‘special targets’), make obviously
cannot compare timestamps to check whether the target’s
dependencies are newer. Therefore, such a target is always
executed, if specified (or implied) on the command line.

For the execution of each target, make prints the actions
while executing them. Note that each of the actions (shell
commands written on a line) are executed in a separate
sub-shell. If an action changes the shell environment, such a
change is restricted to the sub-shell for that action line only. For
example, if one action line contains a command like cd newdir,
the current directory will be changed only for that line/action; for

the next line/action, the current directory will be unchanged.

Processing our Makefile
After understanding how make processes Makefiles, let’s run
make on our own Makefile, and see how it is processed to
illustrate how it works. In the project directory, we run the
following command:

slynux@freedom:~$ make

gcc -I . -c main.c

gcc -I . -c module.c

gcc main.o module.o -o target_bin

What has happened here? When we ran make without
specifying a target on the command line, it defaulted to the
first target in our Makefile—that is, the target all. This target’s
dependencies are module.o and main.o. Since these files do
not exist on our first run of make for this project, make notes
that it must execute the targets main.o and module.o. These
targets, in turn, produce the main.o and module.o files by
executing the corresponding actions/commands. Finally, make
executes the command for the target all. Thus, we obtain our
desired output, target_bin.

If we immediately run make again, without changing any
of the source files, we will see that only the command for the
target all is executed:

slynux@freedom:~$ make

gcc main.o module.o -o target_bin

Though make checked the dependency tree, neither of
the dependency targets (module.o and main.o) had their
own dependency files bearing a later timestamp than the
dependency target filename. Therefore, make rightly did not
execute the commands for the dependency targets. As we
mentioned earlier, since the target all is not a filename, make
cannot compare file timestamps, and thus executes the action/
command for this target.

Now, we update module.c by adding a statement printf(“\
nfirst update”); inside the sample_func() function. We then
run make again:

slynux@freedom:~$ make

gcc -I . -c module.c

gcc main.o module.o -o target_bin

Since module.c in the dependency tree has changed (it
now has a later timestamp than its target, module.o), make
runs the action for the module.o target, which recompiles the
changed source file. It then runs the action for the all target.

We can explicitly invoke the clean target to clean up all
the generated .o files and target_bin:

$ make clean

80 | September 2010 | LINUX For YoU | www.LinuxForU.com

Developers | Let’s Try ___

rm -rf *.o

rm target_bin

More bytes on Makefiles

Make provides many interesting features that we can use in
Makefiles. Let’s look at the most essential ones.

Dealing with assignments
There are different ways of assigning variables in a
Makefile. They are (type of assignment, followed by the
operator in parentheses):
1. Simple assignment (:=)

We can assign values (RHS) to variables (LHS) with this
operator, for example: CC := gcc. With simple assignment
(:=), the value is expanded and stored to all occurrences in the
Makefile when its first definition is found.

For example, when a CC := ${GCC} ${FLAGS}
simple definition is first encountered, CC is set to gcc -W
and wherever ${CC} occurs in actions, it is replaced with
gcc -W.
2. Recursive assignment (=)

Recursive assignment (the operator used is =) involves
variables and values that are not evaluated immediately on
encountering their definition, but are re-evaluated every time
they are encountered in an action that is being executed. As an
example, say we have:

GCC = gcc
FLAGS = -W
With the above lines, CC = ${GCC} {FLAGS} will be

converted to gcc -W only when an action like ${CC} file.c
is executed somewhere in the Makefile. With recursive
assignation, if the GCC variable is changed later (for
example, GCC = c++), then when it is next encountered
in an action line that is being updated, it will be re-
evaluated, and the new value will be used; ${CC} will
now expand to c++ -W. We will also have an interesting
and useful application further in the article, where this
feature is used to deal with varying cases of filename
extensions of image files.
3. Conditional assignment (?=)

Conditional assignment statements assign the given
value to the variable only if the variable does not yet have
a value.
4. Appending (+=)

The appending operation appends texts to an existing
variable. For example:

CC = gcc
CC += -W
CC now holds the value gcc -W.
Though variable assignments can occur in any part of the

Makefile, on a new line, most variable declarations are found
at the beginning of the Makefile.

Using patterns and special variables
The % character can be used for wildcard pattern-matching,
to provide generic targets. For example:

%.o: %.c

[TAB] actions

When % appears in the dependency list, it is replaced
with the same string that was used to perform substitution in
the target.

Inside actions, we can use special variables for matching
filenames. Some of them are:

$@ (full target name of the current target)
$? (returns the dependencies that are newer than the

current target)
$* (returns the text that corresponds to % in the target)
$< (name of the first dependency)
$^ (name of all the dependencies with space as the

delimiter)
Instead of writing each of the file names in the actions and

the target, we can use shorthand notations based on the above,
to write more generic Makefiles.

Action modifiers
We can change the behaviour of the actions we use by
prefixing certain action modifiers to the actions. Two
important action modifiers are:

- (minus) Prefixing this to any action causes any error
that occurs while executing the action to be ignored. (By
default, execution of a Makefile stops when any command
returns a non-zero (error) value.) If an error occurs, a
message is printed, with the status code of the command,
and noting that the error has been ignored. Looking at the
Makefile from our sample project: in the clean target, the rm
target_bin command will produce an error if that file does
not exist (this could happen if the project had never been
compiled, or if make clean is run twice consecutively). To
handle this, we can prefix the rm command with a minus, to
ignore errors: -rm target_bin.

@ (at) suppresses the standard print-action-to-standard-
output behaviour of make, for the action/command that is
prefixed with @. For example, to echo a custom message
to standard output, we want only the output of the echo
command, and don’t want to print the echo command line
itself. @echo Message will print ‘Message’ without the echo
command line being printed.

Use PHONY to avoid file-target name conflicts
Remember the all and clean ‘special’ targets in our Makefile?
What happens when the project directory has files with the
names ‘all’ or ‘clean’? The conflicts will cause errors. Use
the .PHONY directive to specify which targets are not to be
treated as files—for example: .PHONY: all clean.

Simulating make without actual execution

___ Let’s Try | Developers

www.LinuxForU.com | LINUX For YoU | September 2010 | 81

At times, maybe when developing the Makefile, we may
want to trace the make execution (and view the logged
messages) without actually running the actions, which is time
consuming. Simply use make -n to do a ‘dry run’.

Using the shell command output in a variable
Sometimes we need to use the output from one command/
action in other places in the Makefile—for example, checking
versions/locations of installed libraries, or other files required
for compilation. We can obtain the shell output using the shell
command. For example, to return a list of files in the current
directory into a variable, we would run: LS_OUT = $(shell ls).

Nested Makefiles
Nested Makefiles (which are Makefiles in one or more
subdirectories that are also executed by running the make
command in the parent directory) can be useful for building
smaller projects as part of a larger project. To do this, we set
up a target whose action changes directory to the subdirectory,
and invokes make again:

subtargets:

 cd subdirectory && $(MAKE)

Instead of running the make command, we used
$(MAKE), an environment variable, to provide flexibility to
include arguments. For example, if you were doing a ‘dry run’
invocation: if we used the make command directly for the
subdirectory, the simulation option (-n) would not be passed,
and the commands in the subdirectory’s Makefile would
actually be executed. To enable use of the -n argument, use
the $(MAKE) variable.

Now let’s improve our original Makefile using these
advanced features:

CC = gcc # Compiler to use

OPTIONS = -O2 -g -Wall # -g for debug, -O2 for optimise and -Wall

additional messages

INCLUDES = -I . # Directory for header file

OBJS = main.o module.o # List of objects to be build

.PHONY: all clean # To declare all, clean are not files

all: ${OBJS}

 @echo “Building..” # To print “Building..” message

 ${CC} ${OPTIONS} ${INCLUDES} ${OBJS} -o target_bin

%.o: %.c # % pattern wildcard matching

 ${CC} ${OPTIONS} -c $*.c ${INCLUDES}

list:

 @echo $(shell ls) # To print output of command ‘ls’

clean:

 @echo “Cleaning up..”

 -rm -rf *.o # - prefix for ignoring errors and continue execution

 -rm target_bin

Run make on the modified Makefile and test it; also run
make with the new list target. Observe the output.

Make in non-compilation contexts
I hope you’re now well informed about using make in a
programming context. However, it’s also useful in non-
programming contexts, due to the basic behaviour of
checking the modification timestamps of target files and
dependencies, and running the specified actions when
required. For example, let’s write a Makefile that will
manage an image store for us, doing thumbnailing when
required. Our scenario is as follows:
 � We have a directory with two subdirectories, images and

thumb.
 � The images subdirectory contains many large image files;

thumb contains thumbnails of the images, as .jpg files,
100x100px in image size.

 � When a new image is added to the images directory,
creation of its thumbnail in the thumb directory should be
automated. If an image is modified, its thumbnail should
be updated.

 � The thumbnailing process should only be done for new
or updated images, and not images that have up-to-date
thumbnails.
This problem can be solved easily by creating a Makefile

in the top-level directory, as follows:

FILES = $(shell find images -type f -iname “*.jpg” | sed ‘s/images/

thumb/g’)

CONVERT_CMD = convert -resize “100x100” $< $@

MSG = @echo “\nUpdating thumbnail” $@

all: ${FILES}

thumb/%.jpg: images/%.jpg

 $(MSG)

 $(CONVERT_CMD)

thumb/%.JPG: images/%.JPG

 $(MSG)

 $(CONVERT_CMD)

clean:

 @echo Cleaning up files..

 rm -rf thumb/*.jpg thumb/*.JPG

In the above Makefile, FILES = $(shell find images -type
f -iname “*.jpg” | sed ‘s/images/thumb/g’) is used to generate
a list of dependency filenames. JPEG files could have the
extension .jpg or .JPG (that is, differing in case). The -iname
parameter to find (find images -type f -iname “*.jpg”) will
do a case-insensitive search on the names of files, and will
return files with both lower-case and upper-case extensions—

Developers | Let’s Try ___

82 | September 2010 | LINUX For YoU | www.LinuxForU.com

for example, images/1.jpg, images/2.jpg, images/3.JPG and
so on. The sed command replaces the text ‘images’ with
‘thumb’, to get the dependency file path.

When make is invoked, the all target is executed first.
Since FILES contains a list of thumbnail files for which to
check the timestamp (or if they exist), make jumps down to
the thumb/%.jpg wildcard target for each thumbnail image
file name. (If the extension is upper-case, that is, thumb/3.
JPG, then make will look for, and find, the second wildcard
target, thumb/%.JPG.) For each thumbnail file in the thumb
directory, its dependency is the image file in the images
directory. Hence, if any file (that’s expected to be) in the
thumb directory does not exist, or its timestamp is older than
the dependency file in the images directory, the action (calling
$(CONVERT_CMD) to create a thumbnail) is run.

Using the features we described earlier, CONVERT_CMD
is defined before targets are specified, but it uses recursive
assignment. Hence, the input and target filenames passed
to the convert command are substituted from the first
dependency ($<) and the target ($@) every time the action
is invoked, and thus will work no matter from which action
target (thumb/%.JPG or thumb/%.jpg) the action is invoked.
Naturally, the ‘Updating thumbnail’ message is also defined
using recursive assignment for the same reasons, ensuring that
$(MSG) is re-evaluated every time the actions are executed,
and thereby able to cope with variations in the case of the
filename extension.

slynux@freedom:~$ make

Updating thumbnail 1.jpg

convert -resize “100x100” images/1.jpg thumb/1.jpg

… …Updating thumbnail 4.jpg

convert -resize “100x100” images/4.jpg thumb/4.jpg

If I edit 4.jpg in images and re-run make, since only
4.jpg’s timestamp has changed, a thumbnail is generated for
that image:

slynux@freedom:~$ make

Updating thumbnail 4.jpg

convert -resize “100x100” images/4.jpg thumb/4.jpg

Writing a script (shell script or Python, etc) to maintain
image thumbnails by monitoring timestamps would have
taken many lines of code. With make, we can do this in just 8
lines of Makefile. Isn’t make awesome?

That’s all about the basics of using the make utility. Happy
hacking till we meet again!

By: Sarath Lakshman
The author is a Hacktivist of Free and Open Source
Software from Kerala. He loves working on the GNU/Linux
environment and controbutes to the PiTiVi video editor
project. He is also the developer of SLYNUX, a distro for
newbies. He blogs at www.sarathlakshman.info.

___ Let’s Try | Developers

www.LinuxForU.com | LINUX For YoU | September 2010 | 83

