
Q
uoting Wikipedia, “software
frameworks aim to facilitate
software development by allowing
designers and programmers

to devote their time to meeting software
requirements rather than dealing with the
more standard low-level details of providing
a working system, thereby reducing overall
development time.”

Rails is one of the most famous Web
application development frameworks on top of
the Ruby programming language. Django, on the
other hand, is an advanced Web programming
framework built on top of Python. Django is a
strong competitor of Ruby on Rails.

Django abstracts lots of background details,
like the SQL database, by providing higher-
level interfaces. It is a very handy framework
and a quick solution to build any complex Web
application. If you are already familiar with the
Python programming language, you would find
it easy to hack with Django.

Let us get started
We will now look at how to get started with
Django. You need the Django development
server to work with it. Download the
development server from www.djangoproject.

com and install it as follows:

$ wget http://www.djangoproject.com/download/1.1.1/tarball/

$ tar xzvf Django-1.1.1.tar.gz

$ cd Django-1.1.1

$ sudo python setup.py install

...or on Ubuntu:

$ sudo apt-get install python-django

On installation, certain Django utilities
like django-admin and manage.py will be
available. We will use these tools throughout the
development process.

Now let us dig into the basics. A Django
project is an environment where we deploy the
Django server. A Django project may contain
more than one application. Here, there are
Django Web applications that are sub-grouped
as different modules. You will understand
the distinction between a Django project and
application in detail when we look at the code.

You can create a new Django project using
the django-admin command:

slynux@hackbox:~/LFY$ django-admin startproject helloweb

slynux@hackbox:~/LFY$ cd helloweb/

Here’s how to start using Django for Web application development.

Django

WWW.WWW.WWW.

When Python Bites the Web

Q
uoting Wikipedia, “software
frameworks aim to facilitate
software development by allowing
designers and programmers

to devote their time to meeting software
requirements rather than dealing with the
more standard low-level details of providing
a working system, thereby reducing overall
development time.”

Rails is one of the most famous Web
application development frameworks on top of
the Ruby programming language. Django, on the
other hand, is an advanced Web programming
framework built on top of Python. Django is a
strong competitor of Ruby on Rails.

Django abstracts lots of background details,
like the SQL database, by providing higher-
level interfaces. It is a very handy framework
and a quick solution to build any complex Web
application. If you are already familiar with the
Python programming language, you would find
it easy to hack with Django.

Let us get started
We will now look at how to get started with
Django. You need the Django development
server to work with it. Download the
development server from www.djangoproject.

com and install it as follows:

$ wget http://www.djangoproject.com/download/1.1.1/tarball/

$ tar xzvf Django-1.1.1.tar.gz

$ cd Django-1.1.1

$ sudo python setup.py install

...or on Ubuntu:

$ sudo apt-get install python-django

On installation, certain Django utilities
like django-admin and manage.py will be
available. We will use these tools throughout the
development process.

Now let us dig into the basics. A Django
project is an environment where we deploy the
Django server. A Django project may contain
more than one application. Here, there are
Django Web applications that are sub-grouped
as different modules. You will understand
the distinction between a Django project and
application in detail when we look at the code.

You can create a new Django project using
the django-admin command:

slynux@hackbox:~/LFY$ django-admin startproject helloweb

slynux@hackbox:~/LFY$ cd helloweb/

40  |  MARCH 2010 | LINUX FoR YoU | www.LinuxForU.com

Developers  |  How To __

www.LinuxForU.com | LINUX FoR YoU | MARCH 2010 | 41

___ How To  |  Developers

The above snippet informs us that a development server
has started and we can access the output pages from the local
host machine by pointing a Web browser to the following
URL: http://127.0.0.1:8000/. By default, the development
server runs at port 8000. We can change it by using the desired
port number as an additional argument along with the manage.
py command as follows:

slynux@hackbox:~/LFY/helloweb$./manage.py runserver port_no

Shell
There is an option provided by manage.py—the Django shell. We
can use it to access the Django Python interpreter (which runs the
current project's Python interpreter with its environment set-up).
It is very helpful during the debugging process:

slynux@hackbox:~/LFY/helloweb$./manage.py shell

Python 2.6.4rc2 (r264rc2:75497, Oct 20 2009, 02:55:11)

[GCC 4.4.1] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>>

We need to write a sample Web page using Django now.
Create a file views.py and append the following lines in it:

from django.http import HttpResponse

def index(request):

 html = “<h1>Hello Web !</h1>”

 return HttpResponse(html)

The above snippet of code is known as a ‘view’. Views
generate the HTML data for the Web page:

We need to set up the urls.py next. Add the following line
to urls.py:

(r'^helloweb/$', 'helloweb.views.index'),

...so that it looks like the following code:

from django.conf.urls.defaults import *

urlpatterns = patterns('',

 (r'^helloweb/$', 'helloweb.views.index'),

)

Now, using a browser, check out the following Web
page: http://localhost:8000/helloweb. You can see the output
returned by the index() function.

slynux@hackbox:~/LFY/helloweb$ ls

__init__.py manage.py settings.py urls.py

A directory named helloweb/, which is the name given to
the project in the above snippet, will be created. The directory
will contain the basic skeleton for a Django project. Figure 1
shows the directory skeleton structure.

You will find the __init__.py file in most of the directories
in a Django project. Its purpose is to mark the directories on a
disk as Python package directories, to be imported by Python
in the program.

For example, if we have a directory foo/ and it contains the
files __init__.py and linux.py, we can access its contents from
a Python shell as follows:

>>> from foo import linux

The manage.py file is the project management file.
We will execute this file to do further management tasks
related to the current project after the basic skeleton is
created. We will use manage.py to start the development
server, create new applications, synchronise database tables
and do many other things inside the project directory in
which manage.py exists.

The settings.py file holds the different settings variables
for the current Django project. It includes the time zone used,
database authentication and connectivity, templates, additional
Django extensions support, etc. It manages the overall settings
for the project.

The urls.py file is the URL map file for the current Django
project. In urls.py, we will add different URL mapping schemes.
When we request some URL, the function of this file is to specify
what should be displayed as the output. It has a pretty good regex
support, and many customisation options. It directs each URL to
a view function, which returns the output HTTP response.

If some non-existent URL is requested, we can direct it
to a custom ‘404 Error’ page. Or if we request a URL in the
format of http://example.com/page/(digits)/ (for example,
http://example.com/page/11/), we can write custom regular
expression patterns such that this Web page will always be
handled by a custom-written page function and the (digits)
will be taken as the parameter.

Now, let’s look at how to set up a basic Django
HelloWorld application.

We'll use the Django development server to test our
Web application. After development, we will deploy it on an
Apache server with Django extension support.

Navigate to the project skeleton directory that we have
created and issue the following command:

slynux@hackbox:~/LFY/helloweb$./manage.py runserver

Validating models...

0 errors found

Django version 1.1.1, using settings 'helloweb.settings'

Development server is running at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Figure 1: Directory structure of the 'helloweb' Django project

40  |  MARCH 2010 | LINUX FoR YoU | www.LinuxForU.com

Developers  |  How To __

www.LinuxForU.com | LINUX FoR YoU | MARCH 2010 | 41

___ How To  |  Developers

Project settings
The settings.py file handles the overall settings for the current
Django project. Let's take a look at the basic file structure.
Here, I will only explain the important sections in this file.
It is much easier to comprehend other options since they are
self-explanatory, thanks to the excellent commenting:

slynux@hackbox:~/LFY/helloweb$ less settings.py:

DATABASE_ENGINE = '' # 'postgresql_psycopg2', 'postgresql', 'mysql',

 # 'sqlite3' or 'oracle'.

DATABASE_NAME = '' # Or path to database file if using sqlite3.

DATABASE_USER = '' # Not used with sqlite3.

DATABASE_PASSWORD = '' # Not used with sqlite3.

DATABASE_HOST = '' # Set to empty string for localhost.

 # Not used with sqlite3.

DATABASE_PORT = '' # Set to empty string for default.

 # Not used with sqlite3.

This section is used to provide the database settings. In
Django, we use the models concept to deal with the database
and datamodels. It supports all the various database servers
that are widely used. To use a MySQL server, we can
configure the settings as follows:

DATABASE_ENGINE = 'mysql'

DATABASE_NAME = 'database_name'

DATABASE_USER = 'database_username'

DATABASE_PASSWORD = 'password'

We may use CSS and JS files as resource files for our
Web page. In order to reference them we need to provide the
absolute path and the media URL path. For example:

MEDIA_ROOT = '/home/slynux/LFY/helloweb/media'

MEDIA_URL = ''http://localhost:8000/helloweb/media'

We'll need to specify the MEDIA_URL parameter in the
URL format that points to the absolute path. We will use the
MEDIA_URL to access media files like CSS, JS and other files
accessible throughout the Web URL.

To facilitate template support, we use template settings in
the settings.py file. We specify the templates directory path
using the TEMPLATE_DIRS tuple as follows:

TEMPLATE_DIRS = (

"/home/slynux/LFY/helloweb/templates_dir1",

"/home/slynux/LFY/helloweb/templates_dir2"

)

The INSTALLED_APPS section facilitates using third-party
Django modules along with our project. For example, if we need
a user registration application, we need not write it from scratch.
We can download it and attach that application to our project by
keeping the application in our project directory and adding a line in
the INSTALLED_APPS tuple. When we add some applications to
the current project, we have to add its reference path to this tuple:

INSTALLED_APPS = (

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.sites',

)

Views and templates
Writing dynamic pages in Django is very easy. Django puts
different concepts into practice—like views and templates.

Views are routines that actually return an output as a Web
page, i.e., a dynamic page. We can keep several view routines
for different URLs. When a URL is requested by a browser, the
Django server checks its mapping from the urls.py file, and the
corresponding function specified in it is displayed as the output.

Templates in Django are similar to what we mean by
templates, in general. The basic idea is to keep the HTML
user interface code separate from the logic code and data
processing side. Templates provide a higher abstraction over
the logic. We can use the variables and data that are returned
by the core functions as required by the user interface part.
Thus we can simply write the user interface code without
bothering about the core logic.

We will now look at how to write view functions in
practice. We can place our views in any custom .py file. But we
have to specify its path in the urls.py URL configuration file.

Consider the following code fragment:

from django.http import HttpResponse

def index(request):

 return HttpResponse("Hello World")

This is the simplest form of the view function.
To map a URL to a view function, we need to append the

following line to it:

(r'^helloweb/$', 'helloweb.views.index'),

Here, r'^helloweb$' is the URL regular expression; the
^ symbol specifies that the page URL starts with helloweb,
and $ specifies that the URL ends with helloweb. Hence, the
URL is matched to the index() function only when a correct
'helloweb' occurs in the URL.

If the regular expression was just r'helloweb', it can match
any URL, like something_helloweb_something.

The 'request' parameter in a view function is the
HttpRequest object. We can obtain data related to a session,
GET request, and POST request from the 'request' object.

To obtain POST request variables, we can use post_var
= request.POST. It will return a dictionary that contains all
post variables and their values. We can use get_var = request.
GET to obtain all GET variables and values. Similarly, for a
Session, use session_var = request.session.

To check whether a variable exists in a dictionary, we can
make use of the has_key() method. Have a look at the modified
index view function that makes use of GET variables:

42  |  MARCH 2010 | LINUX FoR YoU | www.LinuxForU.com

Developers  |  How To ___

www.LinuxForU.com | LINUX FoR YoU | MARCH 2010 | 43

___ How To  |  Developers

def index(request):

 html = "Hello world, No page requested"

 if request.GET.has_key('page_no')

 html = "Hello World, Page requested is no: %s" %request.GET['page_no']

 return HttpResponse(html)

Now the page responds according to the GET request
variable, page_no. Try different URLs—for example,
http://127.0.0.1:8000/helloweb/?page_id=100 and
http://127.0.0.1:8000/helloweb/

We will now look at how to handle page/15/-type URL
mapping to views—for example, http://127.0.0.1:8000/
helloweb/page/44/. Peeking inside the urls.py file, we have:

urlpatterns = patterns('',

 (r'^helloweb/page/(?P<page_id>\d+)/$','helloweb.views.page'),

)

View function:

def page(request, page_id):

 return HttpResponse("This is Page: %s" %page_id)

Here, (?P<page_id>\d+) is the regular expression
technique used: \d+ defines the type of data, i.e., the digits;
and <page_id> defines the name of the variable, so that we
can use it as an argument for the view function page.

The view function can parse the page number from the
URL and set page_id=number, so that we can manipulate the
output HttpResponse according to that page number.

Here we have discussed a simple HttpResponse, which
always returns HTML code given as an argument. Now we
will look at how to deal with templates.

From now, we will place the HTML code as separate .html
files, instead of inside the view function—and we call them as
templates. Set the templates directory in settings.py:

TEMPLATE_DIRS = (

"/home/slynux/LFY/helloweb/html_templates"

)

Create an HTML file in the html_templates/ directory
called template1.html, with the following content:

<html>

<head><title> Django Hello Web project</title></head>

<body>

<p> This is a helloweb template</p>

<table>

<tr><td>Student </td><td>Roll No</td></tr>

<tr><td>S1</td><td>1</td></tr>

<tr><td>S2 </td><td>2</td></tr>

<tr><td>S3 </td><td>3</td></tr>

</table>

</body>

</html>

Now we can modify the view function to support the
templates. The HTML interface code is taken through a get_
template function. Here, Context() has a dictionary argument.
It takes the variables and objects to be passed to the template
to generate dynamic code. However, no objects are passed to
the template—the template is just a static HTML page:

def index(request):

 from django.template.loader import get_template

 from django.template import Context

 site_template = get_template('template1.html')

 html = site_template.render(Context({}))

 return HttpResponse(html)

Or we can write the same template rendering in one line
using the render_to_response shortcut as follows:

def index(request):

 from django.shortcuts import render_to_response

 return render_to_response('template1.html',{})

We will receive an output like what’s shown below:

	 This	is	a	helloweb	template
	 Student					Roll	No
	 S1	 							1
	 S2	 							2
	 S3	 							3

This is purely static. Now we will write a dynamic page
utilising the facilities of the Django template system. Change
the table section of template1.html to the following:

<table>

<tr><td>Student </td><td>Roll No</td></tr>

{% for name,rollno in student_list.items %}

<tr><td>{{name}}</td><td>{{rollno}}</td></tr>

{% endfor %}

</table>

also add the following code just above the <table>

<p>{% if flag %}

 Flag is on.

{% else %}

 Flag is off.

{% endif %}

</p>

...and the new view function to:

def index(request):

 from django.shortcuts import render_to_response

 flag=False

 if request.GET.has_key('flag'):

 flag=True

 student_list = {'S1':1, 'S2':2, 'S3':3,'S4':4}

 return render_to_response('template1.html',{'student_list':student_list, 'flag':flag})

42  |  MARCH 2010 | LINUX FoR YoU | www.LinuxForU.com

Developers  |  How To ___

www.LinuxForU.com | LINUX FoR YoU | MARCH 2010 | 43

___ How To  |  Developers

...where:
{'student_list':student_list, 'flag':flag} is the argument we
have passed to the template file.
The flag variable becomes true for URL http:/
/127.0.0.1:8000/helloweb/?flag and false for http:/
/127.0.0.1:8000/helloweb/.
{% if flag %} is a conditional block that returns the code
part by checking the Boolean value of the flag variable
passed to the template.
A {% for name,rollno in student_list.items %} statement is
used to derive rows for the table from the data passed as
the dictionary to the template file. This is the same as the
Python statement: for key,val in dictionary.item()
Check out the following URLs, http://127.0.0.1:8000/

helloweb/?flag and http://127.0.0.1:8000/helloweb/ and see
how they work.

Like the above template techniques, there are lots of
options facilitated by the Django template system. The best
place to look for more about Django templates is the code
example from the Django documentation website at http://
docs.djangoproject.com/en/dev/ref/templates/builtins/

Databases and models
Django is designed to work with different database
management systems. It provides a nice interface to interact
with the database- and storage-related tasks. Django does
not use traditional SQL queries to interact with the database,
like most of the other Web programming frameworks. It
introduces a new concept called Models.

In Django, we do not need to work with any SQL
queries; the data model concept introduced by Django
makes it possible to handle data in terms of objects and
groups. Therefore, we have the option of object-oriented
database manipulation and management through Django. We
manipulate every piece of data in terms of objects.

Let's go through a simple example on how to write a Web
page that deals with the MySQL database. Create a database
helloweb_db, using MySQL or phpmyadmin, with the user
name helloweb and password hellowebpass.

To run applications involving MySQL access, make
sure that the mysql-server and python-mysqldb packages
are already installed. Modify settings.py with the MySQL
database details as explained in the earlier part of this article.

Django can only handle one project at a time. But it can
execute many applications. Applications are sub-modules of
the Django project. While deploying the Web server, we set
the Web root directory to a Django project. We access all other
Django applications related to that project by postfixing a path
to the Web root URL.

Now we will create a Django application to learn how to
code database interactive pages.

slynux@hackbox:~/LFY/helloweb$./manage.py startapp student

slynux@hackbox:~/LFY/helloweb$ cd student

Now the skeleton files for the application book appear in

the book/ directory. There will be a models.py file. Write the
following code in it:

from django.db import models

class StudentRegister(models.Model):

 name= models.CharField(max_length=30)

 guardian_name= models.CharField(max_length=30)

 rollno = models.IntegerField()

 admission_date = models.DateTimeField()

We now need to add the reference to the application we
created to the INSTALLED_APPS tuple of the settings.py
file—i.e., add the entry helloweb.student to the tuple.

To create the corresponding tables automatically in the
database, issue the following command:

slynux@hackbox:~/LFY/helloweb$./manage.py syncdb

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table student_studentregister

You just installed Django's auth system, which means you don't have any

superusers defined.

Would you like to create one now? (yes/no): yes

Username (Leave blank to use 'slynux'):

E-mail address: slynux@slynux.com

Password:

Password (again):

Superuser created successfully.

Installing index for auth.Permission model

Installing index for auth.Message model

You can see that besides the student_studentregister tables,
so many other tables are also created. These are actually for
the user administration option provided by Django. For every
standard Web application, there will be an administration
page. If you have used any content management system like
Drupal, you would have seen some kind of administration
page that can handle many users, the database contents, etc.
Django has a nice feature — by default, it comes with basic
data model administration. We can customise this to handle
many users and add additional features. You can learn more
about the administration interface at http://docs.djangoproject.
com/en/dev/intro/tutorial02/#activate-the-admin-site.

You can view the SQL code used by Django internally to
create tables by issuing the following command:

slynux@hackbox:~/LFY/helloweb$./manage.py sql student

BEGIN;

CREATE TABLE `student_studentregister` (

44  |  MARCH 2010 | LINUX FoR YoU | www.LinuxForU.com

Developers  |  How To ___

www.LinuxForU.com | LINUX FoR YoU | MARCH 2010 | 45

___ How To  |  Developers

 `id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY,

 `name` varchar(30) NOT NULL,

 `guardian_name` varchar(30) NOT NULL,

 `rollno` integer NOT NULL,

 `admission_date` datetime NOT NULL

)

;

COMMIT;

Since the tables are already created by syncdb, we can
work on the data storage using data model objects. For
debugging and learning purposes, we can make use of the
Django shell interpreter:

slynux@hackbox:~/LFY/helloweb$./manage.py shell

Python 2.6.4rc2 (r264rc2:75497, Oct 20 2009, 02:55:11)

[GCC 4.4.1] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>> from helloweb.student.models import StudentRegister

>>> student_object = StudentRegister()

>>> student_object.name = "S1"

>>> student_object.guardian_name = "G1"

>>> student_object.rollno = 1

>>> student_object.admission_date = '2009-11-01'

>>> student_object.save()

Now the object instance is saved in the table.

You can retrive the object instances for StudentRegister data

model as the following.

>>> StudentRegister.objects.all()

[<StudentRegister: StudentRegister object>]

It returns a list of all instances of StudentRegister class.

If you need to get the object instance for a particular data

entry such that rollno=4,

 >>> s =StudentRegister .objects.get(rollno=4)

If you need to remove it from database table,

>>> s.delete()

We will now modify the templates and views to support
database interaction.

Add some more entries to the table by using student_
object = StudentRegister() and save it using the student_
object.save() method.

Replace the student_list = {'S1':1, 'S2':2, 'S3':3,'S4':4} line
in the view function with the following code that grabs data
from the database.

from helloweb.student.models import StudentRegister

slist = StudentRegister.objects.all()

student_list = {}

for s in slist:

 student_list[s.name] = s.rollno

This will make it populate the student_list dictionary with
entries from the database/StudentRegister instances.

Run the development Web server and see the output. You
can see that the table is populated with data from the database.
It would be the same data you have fed through the Django
shell interface.

Finally, here is a task for you: Modify the template
file and the view function index() to view all the data from
the StudentRegister instances—i.e., the guardian's name,
admission date, etc. Also write a page http://127.0.0.1:8000/
helloweb/post_data and a post() view function so that we are
able to insert data into the database from a Web interface. Use
the same statements we used in the Django shell interface to
implement it.

This article has covered most of the bits and bytes at
the basic level of Django Web application development.
Once you get started coding in Django, you will definitely
fall in love with it. The Django project website has
excellent documentation available. You should always
use http://docs.djangoproject.com/en/1.1/ as the primary
reference.

By: Sarath Lakshman
The author is a Hacktivist of Free and Open Source Software
from Kerala. He loves working on the GNU/Linux environment
and contributes to the PiTiVi video editor project. He is also the
developer of SLYNUX, a distro for newbies. He blogs at www.
sarathlakshman.info

44  |  MARCH 2010 | LINUX FoR YoU | www.LinuxForU.com

Developers  |  How To ___

www.LinuxForU.com | LINUX FoR YoU | MARCH 2010 | 45

___ How To  |  Developers

